王浩宇
教授
博士毕业院校: 美国马里兰大学
电话:
办公室: 信息学院3-530
专业方向:
单位:
所属课题组:
研究方向: 电力电子,电动汽车,光伏储能,AI电源,电源芯片
招聘主页:
简介
团队
科研
教学
服务
成果
论文
影集
报道
主要岗位职责(A角)
兼任岗位职责(B角)
兼任岗位职业(C角)

王浩宇2009年本科毕业于浙江大学竺可桢学院混合班,获竺可桢特优毕业生。2014年博士毕业于马里兰大学电气工程专业,获杰出博士论文奖金。后入职上海科技大学,2023年在剑桥大学访学。现任信息学院党总支书记、长聘正教授、博导

王博士的研究兴趣包括:电力电子,电动汽车,光伏储能,AI电源,电源芯片等。他主持NSFC、上海市等资助的基础研究及企业研发课题10余项,教研经费1400余万。多项研究成果获落地,他最先提出了基于自适应母线电压的电动汽车最优能效点追踪充电技术,获得主流主机厂的推广应用。

王博士发表论文150余篇(CAS1区47篇),被引3700余次,申请专利20余项,做受邀报告40余次。他省部一等奖等教学科研奖项10余项,入选IET Fellow、上海市启明星计划、扬帆计划、明珠计划、斯坦福2%顶尖科学家,共指导8名研究生获得国家奖学金。

王博士现任IEEE TIE副主编、IEEE TTE副主编CPSS TPEA副主编,IEEE TPEL客座副主编,IEEE APEC的Track主席。曾任IEEE JESTPE客座主编IEEE OJPE客座副主编,在APEC、电源学会学术年会等国内外学术会议组委会任职30余次。

  • 姓名:梁家伟
    身份:博士生(上科大本科)
    年级:2020
    邮箱:liangjw@
    研究方向:数据中心
  • 姓名:陆以清
    身份:博士生(浙大本科)
    年级:2020
    邮箱:luyq1@
    研究方向:光伏储能
  • 姓名:李泽晖
    身份:博士生(上大本科)
    年级:2021
    邮箱:lizh2@
    研究方向:数据中心
  • 姓名:诸葛英健
    身份:博士生(浙大本科)
    年级:2021
    邮箱:zhugeyj@
    研究方向:脉冲电源
  • 姓名:潘其山
    身份:博士生(浙大本科)
    年级:2022
    邮箱:panqsh2022@
    研究方向:电动汽车
  • 姓名:张昊宇
    身份:博士生(上科大本科)
    年级:2022
    邮箱:zhanghy2022@
    研究方向:光伏储能
  • 姓名:王屹林
    身份:博士生(海大本科)
    年级:2022
    邮箱:wangyl2022@
    研究方向:电磁俘能
  • 姓名:吴逸凡
    身份:博士生(上科大本科)
    年级:2024
    邮箱:wuyf2024@
    研究方向:光伏储能
  • 姓名:彭毓崇
    身份:硕士生(中南本科)
    年级:2022
    邮箱:pengych2022@
    研究方向:光伏储能
  • 姓名:彭楚涵
    身份:硕士生(浙大本科)
    年级:2022
    邮箱:pengchh2022@
    研究方向:光伏储能
  • 姓名:吴宜涵
    身份:硕士生(上科大本科)
    年级:2023
    邮箱:wuyh22023@
    研究方向:光伏储能
  • 姓名:李晨曦
    身份:硕士生(上科大本科)
    年级:2023
    邮箱:lichx2023@
    研究方向:数据中心
  • 姓名:刘赜源
    身份:硕士生(上科大本科)
    年级:2023
    邮箱:liuzy12023@
    研究方向:数据中心
  • 姓名:许煌盛
    身份:硕士生(浙大本科)
    年级:2023
    邮箱:xuhsh2023@
    研究方向:电动汽车
  • 姓名:刘冠江
    身份:硕士生(哈工深本科)
    年级:2024
    邮箱:liugj2024@
    研究方向:电动汽车
  • 姓名:王子尧
    身份:硕士生(上科大本科)
    年级:2024
    邮箱:wangzy2024@
    研究方向:数据中心
  • 姓名:______校友______
    身份:
    年级:
    邮箱:
    研究方向:
  • 姓名:薛波
    身份:加入汇川
    年级:2024届博
    邮箱:xuebo@
    研究方向:无线传能
  • 姓名:王良
    身份:加入华为
    年级:2024届博
    邮箱:wangliang1@
    研究方向:数据中心
  • 姓名:周明德
    身份:加入华为
    年级:2024届博
    邮箱:zhoumd@
    研究方向:电动汽车
  • 姓名:束冬冬
    身份:加入特斯拉
    年级:2023届博
    邮箱:shudd@
    研究方向:电动汽车

     

      

 

 

 

 

 

 

Current Courses

• 2025 Spring

EE270 Modeling and Control of Power Electronic Converters

Graduate level, 32 students

• 2025 MOOC

EE270 Modeling and Control of Power Electronic Converters

Massive Open Online Courses (MOOC)

Past Courses

• 2024 Fall

EE115A Analog Circuits

Undergraduate level, 62 understudents

• 2024 Spring

EE171 Power Electronics

Undergraduate level, 21 undergraduates

• 2023 Fall

EE270 Modeling and Control of Power Electronic Converters

Graduate level, 20 graduates, 3 undergraduates

• 2023 Spring

SI100 Introduction to Information Science and Technology

108 undergraduates

• 2022 Fall

EE270 Modeling and Control of Power Electronic Converters

Massive Open Online Courses (MOOC)

• 2022 Fall

MSE2125 Introduction to Energy Science and Technology

21 under, 113 graduates

• 2022 Spring

SI100B Introduction to Information Science and Technology

109 undergraduates

• 2021 Fall

EE270 Modeling and Control of Power Electronic Converters

Graduate level, 9 graduate students, 8 undergraduates

• 2021 Fall

MSE2125 Introduction to Energy Science and Technology

19 under, 103 graduates

• 2021 Spring

SI100B Introduction to Information Science and Technology

Undergraduate level, 161 students

• 2020 Fall

EE270 Modeling and Control of Power Electronic Converters

Undergraduate level, 12 students

• 2020 Fall

MSE2125 Introduction to Energy Science and Technology

Undergraduate level, 165 students

• 2020 Spring

EE111 Electric Circuits

Undergraduate level, 69 students

• 2019 Fall

EE270 Modeling and Control of Power Electronic Converters

Graduate level, 14 graduate students, 4 undergraduates

• 2019 Spring

EE112 Analog Integrated Circuits I

Undergraduate level, 13 students

• 2018 Spring

EE112 Analog Integrated Circuits I

Undergraduate level, 60 students

• 2017 Fall

EE270 Power Electronics

Graduate level, 7 students

• 2017 Spring

EE270 Power Electronics

Graduate level, 17 students

• 2016 Fall

EE112 Analog Integrated Circuits I

Undergraduate level, 39 students

• 2016 Spring

EE513 Power Electronics

Graduate level, 10 students

• 2016 Spring

SI100 Introduction to Information Science and Technology

Undergraduate level, 295 students

• 2015 Fall

EE531 Analog Integrated Circuits

Graduate level, 25 students

• 2015 Summer

SI101 Course Design

Undergraduate level, 5 students

• 2015 Spring

EE513 Power Electronics

Graduate level, 21 students

• 2015 Spring

SI100 Introduction to Information Science and Technology

Undergraduate level, 207 students

• 2014 Fall

EE530 Semiconductor Devices

Graduate level, 17 students

• 2013 Spring

ENEE498R Special Topics in Renewable Energy

University of Maryland, College Park

• 2012 Fall

ENEE417 Microelectronics Design Laboratory

University of Maryland, College Park

• 2011 Fall

ENEE303 Analog and Digital Electronics

University of Maryland, College Park

• 2011 Spring

ENEE307 Electronics Circuits Design Laboratory

University of Maryland, College Park

校内服务

• 上海科技大学党委,委员     

• 上海科技大学河南招生组,组长

• 上海科技大学EHS委员会,委员    

• 信息学院党总支,书记

• 信息学院公共关系委员会,主任

• 信息学院EHS委员会,主任

学术兼职

• IEEE Trans. Ind. Electron. 副主编

• IEEE Trans. Transp. Electrif. 副主编

• CPSS Trans. Power Electron. Appl. 副主编

• IEEE Trans. Power Electron. 客座副主编

• IEEE J. Emerg. Sel. Topics Power Electron. 客座主编

• IEEE Open J. Power Electron. 客座副主编

• CPSS Trans. Power Electron. Appl.客座主编

• IEEE Appl. Power Electron. Conf.轨道主席

• 中国电源学会学术工作委员会,委员

• 中国电源学会标准化工作委员会,委员

• 中国电源学会科普工作专委会,委员

• 上海电源学会,理事

  • [J50] Y. Lu, Y. Shi, Y. Liu, and H. Wang†, "Remaining useful lifetime prediction of lithium-ion batteries based on fragment data and trend identification,"  IEEE Trans. Ind. Inform., in press.

  • [J49] M. Zhou, Q. Pan, M. Fu, J. Liang, and H. Wang†, “Cycle estimation based deadbeat interleaving method for critical mode totem-pole rectifiers,” IEEE Trans. Ind. Electron., in press.

  • [J48] C. Li, L. Wang, G. Zheng, M. Fu, and H. Wang†, Small-signal modeling and loop analysis of ultrafast series capacitor trans-inductor voltage regulator with constant on-time control, IEEE Trans. Power Electron., vol. 40, no. 2, pp. 3262-3274, Feb. 2025.

  • [J47] J. Liang, Y. Qin, Y. Liu, M. Fu, and H. Wang†, Phase Shift Regulated Resonant Switched-Capacitor-Based Intermediate Bus Converter for 48 V Data Center Power System, IEEE Trans. Ind. Electron., vol. 72, no. 2, pp. 1475-1485, Feb. 2025.

  • [J46] J. Liang, L. Wang, J. Liang, T. Long, and H. Wang†, A switched-capacitor and series-resonant hybrid MHz DCX in data center applications, IEEE Trans. Power Electron., vol. 39, no. 10, pp. 13389-13400, Oct. 2024.

  • [J45] H. Wang, C. C. Mi, and S.-Y. R. Hui, Guest editorial: special issue on advanced charging technologies for next-generation electric vehicles, IEEE J. Emerg. Sel. Topics Power Electron., vol. 12, no. 1, pp. 6-7, Feb. 2024.

  • [J44] Y. Zhuge, J. Liang, M. Fu, T. Long, and H. Wang†, Comprehensive overview of power electronics intensive solutions for high-voltage pulse generators, IEEE Open J. Power Electron., vol. 5, pp. 21-40, 2024.

  • [J43] B. Xue, L. Wang, P. Zhao, M. Fu, J. Liang, and H. Wang†, Decoupled state-plane analysis of series-series compensated bidirectional IPT systems, IEEE Trans. Power Electron., vol. 39, no. 1, pp. 42-46, Jan. 2024.

  • [J42] B. Xue, L. Wang, M. Fu, and H. Wang†, State-space based universal time-domain model for voltage-fed bidirectional IPT systems, IEEE Trans. Ind. Electron., vol. 71, no. 1, pp. 615-624, Jan. 2024. (ESI highly cited paper as of 2024).

  • [J41] R. He, B. Xue, M. Zhou, M. Fu, J. Liang, Y. Liu, and H. Wang†, Resonant frequency tracking scheme for LLC converter based on large and small signal combined model, IEEE Access, vol. 11, pp. 83390-83399, Jul 2023.

  • [J40] M. Zhou, C. Peng, M. Fu, and H. Wang†, Current zero-crossing prediction based critical conduction mode control of totem-pole PFC rectifiers, IEEE Trans. Power Electron., vol. 38, no. 7, pp. 8513-8527, Jul. 2023.

  • [J39] L. Wang, H. Wang†, M. Fu, J. Liang, and Y. Liu, A three-port energy router for grid-tied PV generation systems with optimized control methods, IEEE Trans. Power Electron., vol. 38, no. 1, pp. 1218-1231, Jan. 2023.

  • [J38] Z. Wei, H. Wang†, Y. Lu, D. Shu, G. Ning, and M. Fu, Bidirectional constant current string-to-cell battery equalizer based on L2C3 resonant topology, IEEE Trans. Power Electron., vol. 38, no. 1, pp. 666-677, Jan. 2023.

  • [J37] J. Liang, M. Fu, J. Liang, and H. Wang†, Overview of voltage regulator modules in 48V bus-based data center power systems, CPSS Trans. Power Electron. Appl., vol. 7, no. 3, pp. 283-299, Sept. 2022.

  • [J36] X. Yang, and H. Wang, Editorial for the special issue on next generation datacenter power conversion technologies, CPSS Trans. Power Electron. Appl., vol. 7, no. 3, pp. 227-228, Sept. 2022.

  • [J35] L. Wang, H. Wang†, M. Fu, Z. Xie, and J. Liang, Three-port power electronic interface with decoupled voltage regulation and MPPT in electromagnetic energy harvesting systems, IEEE Trans. Ind. Appl., vol. 58, no. 2, pp. 2144-2154, Mar./Apr. 2022.

  • [J34] L. Wang, H. Wang†, B. Xue, and M. Zhou, H5-bridge based single-input-dual-output LLC converter with wide output voltage range, IEEE Trans. Ind. Electron., vol. 69, no. 7, pp. 7008-7018, Jul. 2022.

  • [J33] D. Shu, H. Wang†, and M. Zhou, Universal control scheme to achieve seamless dynamic transition of dual-active-bridge converters using zero-current prediction, IEEE Trans. Ind. Electron., vol. 69, no. 6, pp. 5826-5834, Jun. 2022.

  • [J32] M. Zhou, D. Shu, and H. Wang†, An H5-bridge based laddered CLLC DCX with variable dc-link for PEV charging applications, IEEE Trans. Power Electron., vol. 37, no. 4, pp. 4249-4260, Apr. 2022.

  • [J31] Z. Wei, F. Peng, and H. Wang†, An LCC based string-to-cell battery equalizer with simplified constant current control, IEEE Trans. Power Electron., vol. 37, no. 2, pp. 1816-1827, Feb. 2022.

  • [J30] F. Peng, Y. Lu, M. Zhou, and H. Wang†, Hierarchical modular battery equalizer with open-loop control and mitigated recovery effect, CPSS Trans. Power Electron. Appl., vol. 6, no. 4, pp. 310-319, Dec. 2021.

  • [J29] D. Shu, and H. Wang†, Light load performance enhancement technique for LLC-based PEV charger through circuit reconfiguration, IEEE Trans. Transp. Electrif., vol. 7, no. 4, pp. 2104-2113, Dec. 2021.

  • [J28] D. Shu, and H. Wang†, An ultra-wide output range LLC resonant converter based on adjustable turns ratio transformer and reconfigurable bridge, IEEE Trans. Ind. Electron., vol. 68, no. 8, pp. 7115-7124, Aug. 2021.

  • [J27] J. Deng, and H. Wang†, A hybrid-bridge and hybrid modulation based dual-active-bridge converter adapted to wide voltage range, IEEE J. Emerg. Sel. Topics Power Electron., vol. 9, no. 1, pp. 910-920, Feb. 2021.

  • [J26] B. Xue, H. Wang†, J. Liang, Q. Cao, and Z. Li, Phase-shift modulated interleaved LLC resonant converter with ultra wide output voltage range, IEEE Trans. Power Electron., vol. 36, no. 1, pp. 493-503, Jan. 2021.

  • [J25] O. Abdel-Rahim, and H. Wang†, A new high gain dc-dc converter with model-predictive-control based MPPT technique for photovoltaic systems, CPSS Trans. Power Electron. Appl., vol. 5, no. 2, pp. 189-198, Jun. 2020.

  • [J24] O. Abdel-Rahim, and H. Wang†, Five-level one-capacitor boost multilevel inverter, IET Power Electron., vol. 13, no. 11, pp. 2245–2251, Aug. 2020.

  • [J23] C. Li, M. Zhou, and H. Wang†, An H5-bridge based asymmetric LLC resonant converter with an ultra-wide voltage gain range, IEEE Trans. Ind. Electron., vol. 67, no. 11, pp. 9503-9514, Nov. 2020.

  • [J22] T. Chen, O. Abdel-Rahim, F. Peng, and H. Wang†, An improved finite control set-MPC based power sharing control strategy for islanded ac microgrids, IEEE Access, vol. 8, pp. 52676-52686, 2020.

  • [J21] F. Peng, H. Wang†, and Z. Wei, An LLC based highly efficient S2M and C2C hybrid hierarchical battery equalizer, IEEE Trans. Power Electron., vol. 35, no. 6, pp. 5928-5937, Jun. 2020.

  • [J20] X. Lu, and H. Wang†, Optimal sizing and energy management for cost-effective hybrid energy storage systems, IEEE Trans. Ind. Inform., vol. 16, no. 5, pp. 3407-3416, May 2020.

  • [J19] Z. Li, B. Xue, and H. Wang†, An interleaved secondary-side modulated LLC resonant converter for wide output range applications, IEEE Trans. Ind. Electron., vol. 67, no. 2, pp. 1124-1135, Feb. 2020.

  • [J18] J. Deng, H. Wang†, and M. Shang, A ZVS three-port dc/dc converter for high-voltage bus based photovoltaic systems, IEEE Trans. Power Electron., vol. 34, no. 11, pp. 10688-10699, Nov. 2019.

  • [J17] H. Wang†, M. Shang, and D. Shu, Design considerations of efficiency enhanced LLC PEV charger using reconfigurable transformer, IEEE Trans. Veh. Technol., vol. 68, no. 9, pp. 8642-8651, Sept. 2019.

  • [J16] F. Peng, H. Wang†, and L. Yu, Analysis and design considerations of efficiency enhanced hierarchical battery equalizer based on bipolar CCM buck-boost units, IEEE Trans. Ind. Appl., vol. 55, no. 4, pp. 4053-4063, Jul./Aug. 2019.

  • [J15] L. Yu, and H. Wang†, A novel dual-input ZVS dc/dc converter for low-power energy harvesting applications, IEEE J. Emerg. Sel. Topics Power Electron., vol. 7, no. 2, pp. 1197-1206, Jun. 2019.

  • [J14] C. Li, H. Wang†, and M. Shang, A five-switch bridge based reconfigurable LLC converter for deeply depleted PEV charging applications, IEEE Trans. Power Electron., vol. 34, no. 5, pp. 4031-4035, May 2019.

  • [J13] X. Lu, Y. Chen, M. Fu, and H. Wang†, Multi-objective optimization based real-time control strategy for battery/ultracapacitor hybrid energy management systems, IEEE Access, vol. 7, pp. 11640-11650, 2019.

  • [J12] X. Lu, and H. Wang†, A highly efficient multifunctional power electronic interface for PEV hybrid energy management systems, IEEE Access, vol. 7, pp. 8964-8974, 2019.

  • [J11] Z. Li, S. Dusmez, and H. Wang†, A novel soft-switching secondary-side modulated multi-output dc/dc converter with extended ZVS range, IEEE Trans. Power Electron., vol. 34, no. 1, pp. 106-116, Jan. 2019.

  • [J10] M. Shang, and H. Wang†, A voltage quadrupler rectifier based pulsewidth modulated LLC converter with wide output range, IEEE Trans. Ind. Appl., vol. 54, no. 6, pp. 6159-6168, Nov./Dec. 2018.

  • [J9] M. Shang, H. Wang†, and Q. Cao, Reconfigurable LLC topology with squeezed frequency span for high-voltage bus-based photovoltaic applications, IEEE Trans. Power Electron., vol. 33, no. 5, pp. 3688-3692, May 2018.

  • [J8] H. Wang†, and Z. Li, A PWM LLC type resonant converter adapted to wide output range in PEV charging applications, IEEE Trans. Power Electron., vol. 33, no. 5, pp. 3791-3801, May 2018. (ESI highly cited paper as of 2020).

  • [J7] L. Yu, H. Wang†, and A. Khaligh, A discontinuous conduction mode single stage step-up rectifier for low voltage energy harvesting applications, IEEE Trans. Power Electron., vol. 32, no. 8, pp. 6161-6169, Aug. 2017.

  • [J6] H. Wang†, M. Shang, and A. Khaligh, A PSFB based integrated PEV onboard charger with extended ZVS range and zero duty cycle loss, IEEE Trans. Ind. Appl., vol. 53, no. 1, pp. 585-595, Jan./Feb. 2017.

  • [J5] H. Wang, S. Dusmez, and A. Khaligh†, Maximum efficiency point tracking technique for LLC based PEV chargers through variable dc link control, IEEE Trans. Ind. Electron., vol. 61, no. 11, pp. 6041-6049, Nov. 2014.

  • [J4] H. Wang, S. Dusmez, and A. Khaligh†, Design and analysis of a full bridge LLC based PEV charger optimized for wide output battery voltage range, IEEE Trans. Veh. Technol., vol. 64, no. 3, pp. 1603-1613, May 2014. (ESI highly cited paper as of 2021)

  • [J3] H. Wang, A. Hasanzadeh, and A. Khaligh†, Conductive charging of electrified vehicles, IEEE Electrif. Mag., vol. 1, no. 2, pp. 46-58, Dec. 2013. (Invited)

  • [J2] H. Wang, Y. Tang, and A. Khaligh†, A bridgeless boost rectifier for low-voltage energy harvesting applications, IEEE Trans. Power Electron., vol. 28, no. 11, pp. 5206-5214, Nov. 2013.

  • [J1] H. Wang, Y. Zhou, H. Chen, and X. Wu†, Design of multi-mode quasi-resonant fly-back SMPS, Mech. & Elect. Eng. Mag., vol. 29, no. 7, pp. 77-81, Jul. 2009. (Chinese)



  • [P24] 李泽晖, 王浩宇, 潘其山, 一种基于有源钳位与倍流整流的高降压比直流变换器, 中国, 专利申请号202411084671.0, 2024年8月

  • [P23] 王浩宇, 潘其山, 一种超宽增益谐振变换器, 中国, 专利申请号202410494124.3, 2024年4月

  • [P22] 潘其山, 王浩宇, 一种两级式轻母线单相整流变换器, 中国, 专利申请号202410494119.2, 2024年4月

  • [P21] 梁家伟, 王浩宇, 一种基于相移调制的宽调压范围谐振变换器, 中国, 专利申请号202410427243.7, 2024年4月

  • [P20] 周明德, 王浩宇, 图腾柱 PFC 变换器的相位同步控制优化方法, 中国, 专利申请号202410167794.4, 2024年2月

  • [P19] 梁家伟, 王浩宇, 基于开关电容和串联谐振的混合型高降压变换器, 中国, 专利申请号202311042761.9, 2023年8月

  • [P18] 王良, 王浩宇, 串联电容式跨电感稳压器, 中国, 专利申请号202310146311.8, 2023年2月

  • [P17] 王良, 王浩宇, 张昊宇, 基于堆叠桥的双有源桥变换器的混合调制方法, 中国, 专利申请号202310148696.1, 2023年2月

  • [P16] 鲍博, 胡伟, 束冬冬, 王浩宇, 一种反激变换器电路及反激变换器, 中国, 专利申请号CN202320148702.9, 2023年8月

  • [P15] 周明德, 王浩宇, 图腾柱PFC变换器的临界导通模式控制方法, 中国, 专利申请号2023100767370, 2023年1月

  • [P14] 束冬冬, 王浩宇, 下一代800V电池架构高功率密度车载充电机, 中国, 专利申请号202210747334.X, 2022年6月

  • [P13] 束冬冬, 王浩宇, 下一代800V电池架构车载充电机输入低频纹波转移方法, 中国, 专利申请号202210434873.8, 2022年4月

  • [P12] 束冬冬, 王浩宇, 下一代800V电池架构高功率密度车载充电机实现方法, 中国, 专利号ZL202210434128.3, 2022年

  • [P11] 韦峥祺, 王浩宇,“双向输出 L2C3 谐振变换器,” 中国, 专利申请号202210109926.9, 2022年1月

  • [P10] 周明德, 王浩宇,“一种光伏供能的可重构电池均衡系统,” 中国, 专利号ZL 202111096861.0, 2023年5月

  • [P9] 束冬冬, 王浩宇,“一种轻载性能提升的LLC谐振变换器,” 中国, 专利号ZL 2021 1 0365380.9, 2021年4月

  • [P8] 束冬冬, 王浩宇,“一种改善双有源桥动态性能的新型通用四移相调制方法,” 中国, 专利号ZL 2020 1 1526153.1, 2020年12月

  • [P7] 王浩宇, 周明德,“变/定母线电压超宽增益范围双向dc/dc变换器,” 中国, 专利号ZL 2020 1 0163521.4, 2020年03月

  • [P6] 彭发祥, 王浩宇, 一种控制简单且无恢复效应误差的精确电池均衡电路, 中国, 专利号ZL201911117552.X, 2019年

  • [P5] 王浩宇, 韦峥祺,“基于LCC谐振变换器的电池均衡电路及方法,” 中国, 专利号ZL201911094153.6, 2019年11月

  • [P4] 王浩宇, 彭发祥,“基于LLC和Buck-Boost的复合型层级电池均衡电路,” 中国, 专利号ZL 2019 1 1051745.X, 2019年10月

  • [P3] 王浩宇, 李诚, 尚明,“可重构H5逆变桥及基于该逆变桥的单双向谐振变换器,” 中国, 专利号ZL 2019 1 0069148.3, 2019年1月

  • [P2] 王浩宇, 李志清,“一种超宽调压范围的谐振隔离变换器,” 中国, 专利号ZL 2018 1 0727323.9, 2018年7月

  • [P1] 王浩宇, 尚明,“一种倍压整流电路及其在谐振变换器中的应用,” 中国, 专利号ZL 2017 1 0435858.4, 2017年6月


2024▾

2023▾

2022

2021

2020

2019

2018

2017

2016

2015

2014