毛奕婕
助理教授、研究员、博导
博士毕业院校: 香港大学
电话: 021-20684454
办公室: 信息学院2号楼302I室
专业方向:
单位:
所属课题组:
研究方向: 无线通信,人工智能赋能无线通信,优化理论
招聘主页:
简介
团队
科研
教学
服务
成果
论文
影集
报道
主要岗位职责(A角)
兼任岗位职责(B角)
兼任岗位职业(C角)

毛奕婕博士于2014年获得北京邮电大学和伦敦玛丽女王大学荣誉学士双学位。她于2018年获得香港大学电气电子工程系博士学位,师从Victor O.K. Li教授(IEEE Life Fellow)。博士毕业后,她于2018年8月—2019年7月留在香港大学从事博士后工作。2019年8月—2021年7月,她赴英国帝国理工学院从事博士后工作,师从Bruno Clerckx教授。2021年8月,毛奕婕博士加入上海科技大学信息科学与技术学院担任助理教授、研究员、博士生导师。她还担任上海科技大学大道书院书院导师。 

毛奕婕博士获得了EURASIP Journal on Wireless Communications and Networking(JWCN)2022年度最佳论文奖和IEEE International Mediterranean Conference on Communications and Networking (MeditCom) 2023年度最佳论文奖;2021年以及2022年和2023年被评为IEEE Transactions on Communications和IEEE Communications Letters的杰出审稿人。她目前担任IEEECommunications Surveys & Tutorials、IEEE Transactions on Mobile Computing 和IEEE Communications Letters的副主编。她曾担任IEEE Journal on Selected Areas in Communications、IEEE Transactions on Green Communications and Networking和IEEE Open Journal of the Communications Society特刊客座编辑。她曾是2020-2023年IEEE ICC、2021-2023年IEEE WCNC 以及2020-2022年IEEE PIMRC的研讨会联合主席,并且是多场国际IEEE领先会议无线通信专题的TPC成员。2023年至2025年,她被斯坦福大学评为世界前2%的科学家。她已入选第十届中国科协青年人才托举工程,并作为项目负责人承担国家自然科学基金面上项目、青年项目、上海市“科技创新行动计划”启明星项目扬帆专项。



在校生
  • 姓名:毛奕婕
    身份:助理教授
    教育背景:
    邮箱:maoyj@shanghaitech.edu.cn
    研究方向:
  • 姓名:周晓华
    身份:博士研究生
    教育背景:
    邮箱:zhouxh3@shanghaitech.edu.cn
    研究方向:
  • 姓名:赵康淳
    身份:博士研究生
    教育背景:
    邮箱:zhaokch12022@shanghaitech.edu.cn
    研究方向:
  • 姓名:陈可欣
    身份:硕士研究生
    教育背景:
    邮箱:chenkx2023@shanghaitech.edu.cn
    研究方向:
  • 姓名:邱正清
    身份:硕士研究生
    教育背景:
    邮箱:qiuzhq2023@shanghaitech.edu.cn
    研究方向:
  • 姓名:许晨宇
    身份:硕士研究生
    教育背景:
    邮箱:xuchy2024@shanghaitech.edu.cn
    研究方向:
  • 姓名:蒋晓轩
    身份:硕士研究生
    教育背景:
    邮箱:jiangxx2024@shanghaitech.edu.cn
    研究方向:
  • 姓名:朱雨辰
    身份:硕士研究生
    教育背景:
    邮箱:
    研究方向:
  • 姓名:黄昊博
    身份:硕士研究生
    教育背景:
    邮箱:
    研究方向:
校友
  • 姓名:毛奕婕
    身份:助理教授
    教育背景:
    研究方向:
    毕业去向:
  • 姓名:周晓华
    身份:博士研究生
    教育背景:
    研究方向:
    毕业去向:
  • 姓名:赵康淳
    身份:博士研究生
    教育背景:
    研究方向:
    毕业去向:
  • 姓名:陈可欣
    身份:硕士研究生
    教育背景:
    研究方向:
    毕业去向:
  • 姓名:邱正清
    身份:硕士研究生
    教育背景:
    研究方向:
    毕业去向:
  • 姓名:许晨宇
    身份:硕士研究生
    教育背景:
    研究方向:
    毕业去向:
  • 姓名:蒋晓轩
    身份:硕士研究生
    教育背景:
    研究方向:
    毕业去向:
  • 姓名:朱雨辰
    身份:硕士研究生
    教育背景:
    研究方向:
    毕业去向:
  • 姓名:黄昊博
    身份:硕士研究生
    教育背景:
    研究方向:
    毕业去向:

未来智能网络与通信(FineCom)实验室,由毛奕婕博士于2021年9月创立。实验室专注于无线通信网络的研究,着力于未来6G无线通信网络的潜在关键技术。主要研究方向包括(但不限于):


  • 6G潜在新型多址接入技术,主要研究速率分拆多址接入(Rate-Splitting Mulitple Access, RSMA)的原理、架构和应用

  • 人工智能赋能6G无线通信网络(AI + 6G),主要研究使用机器学习和深度学习来设计高效的无线网络资源分配算法。使用无线网络赋能分布式机器学习、联邦学习。

  • 可重构智能超表面(Reconfigurable Intelligent Surface, RIS)辅助的无线网络,如相移设计、波束形成设计和信道估计

  • 通信感知一体化网络(Integrated Sensing and Coommunication, ISAC),主要研究波形设计、干扰管理、资源分配。

  • 空天地一体化网络(Space-Air-Ground Integrated Network, SAGIN),主要研究干扰管理、用户调度和协同传输设计

  • 优化理论(Optimization Theory),主要研究系统的优化设计、优化控制、优化管理问题。



人工智能赋能6G无线通信网络(AI + 6G):

AI for 6G: Our primary focus is on leveraging machine learning (ML) and deep learning (DL) techniques to optimize network performance, resource allocation, and communication efficiency in next-generation wireless systems. We have contributed to various areas, including DL-based beamforming [1]—[4] and DL-based channel estimation [5].

6G for AI: Our focus is on utilizing advanced wireless technologies to enhance distributed and federated learning (FL) frameworks for AI applications. We have made contributions to cloud radio access network (Cloud-RAN)-based FL [6], [7], and RIS-assisted FL [8].


Our Related Works:

[1] Y. Wang, Y. Mao and S. Ji, RS-BNN: A Deep Learning Framework for the Optimal Beamforming Design of Rate-Splitting Multiple Access, in IEEE Transactions on Vehicular Technology, vol. 73, no. 11, pp. 17830-17835, Nov. 2024.

[2] S. Zhang, Y. Mao, B. Clerckx and T. Q. S. Quek, Interference Management in Space-Air-Ground Integrated Networks With Fully Distributed Rate-Splitting Multiple Access, in IEEE Transactions on Wireless Communications, vol. 24, no. 1, pp. 149-164, Jan. 2025.

[2] S. Zhang, Y. Mao, Z. Chen, B. Clerckx and T. Q. S. Quek, Federated Learning-Assisted Predictive Beamforming for Extremely Large-Scale Antenna Array Systems With Rate-Splitting Multiple Access, in IEEE Journal of Selected Topics in Signal Processing.

[4] S. Wang, J. Wang, Y. Mao and Z. Shao, Online Learning-Based Beamforming for Rate-Splitting Multiple Access: A Constrained Bandit Approach, ICC 2023 - IEEE International Conference on Communications, Rome, Italy, 2023, pp. 559-564.

[5] S. Zhang, S. Zhang, Y. Mao, L. K. Yeung, B. Clerckx and T. Q. S. Quek, Transformer-Based Channel Prediction for Rate-Splitting Multiple Access-Enabled Vehicle-to-Everything Communication, in IEEE Transactions on Wireless Communications, vol. 23, no. 10, pp.  

     12717-12730, Oct. 2024.

[6] J. Wang, Y. Mao, T. Wang and Y. Shi, Green Federated Learning Over Cloud-RAN With Limited Fronthaul Capacity and Quantized Neural Networks, in IEEE Transactions on Wireless Communications, vol. 23, no. 5, pp. 4300-4314, May 2024.

[7] Y. Shi, S. Xia, Y. Zhou, Y. Mao, C. Jiang and M. Tao, Vertical Federated Learning Over Cloud-RAN: Convergence Analysis and System Optimization, in IEEE Transactions on Wireless Communications, vol. 23, no. 2, pp. 1327-1342, Feb. 2024.

[8] WANG Yiji, WEN Dingzhu, MAO Yijie, SHI Yuanming. RIS-Assisted Federated Learning in Multi-Cell Wireless Networks[J]. ZTE Communications, 2023, 21(1): 25-37.


6G潜在新型多址接入技术

We focus on a novel multiple access technique known as rate-splitting multiple access (RSMA), which has emerged as a powerful strategy for multiple access, interference management, and multi-user communication in 6G and beyond. We have provided comprehensive tutorials and surveys on RSMA [1-4]. Our contributions include the design of RSMA, its integration with reconfigurable intelligent surfaces (RIS) [6], integrated sensing and communication [7], and visible light communications [8], etc. Additionally, we have investigated the optimal beamforming structure for RSMA [9].


Our Related Works:

[1] Y. Mao, O. Dizdar, B. Clerckx, R. Schober, P. Popovski and H. V. Poor, Rate-Splitting Multiple Access: Fundamentals, Survey, and Future Research Trends, in IEEE Communications Surveys & Tutorials, vol. 24, no. 4, pp. 2073-2126, Fourthquarter 2022.

[2] B. Clerckx et al., A Primer on Rate-Splitting Multiple Access: Tutorial, Myths, and Frequently Asked Questions, in IEEE Journal on Selected Areas in Communications, vol. 41, no. 5, pp. 1265-1308, May 2023.

[3] B. Clerckx et al., Multiple Access Techniques for Intelligent and Multifunctional 6G: Tutorial, Survey, and Outlook, in Proceedings of the IEEE, vol. 112, no. 7, pp. 832-879, July 2024.

[4] A. Mishra, Y. Mao, O. Dizdar and B. Clerckx, Rate-Splitting Multiple Access for 6G—Part I: Principles, Applications and Future Works, in IEEE Communications Letters, vol. 26, no. 10, pp. 2232-2236, Oct. 2022.

[5] Y. Wang, Y. Mao and S. Ji, RS-BNN: A Deep Learning Framework for the Optimal Beamforming Design of Rate-Splitting Multiple Access, in IEEE Transactions on Vehicular Technology, vol. 73, no. 11, pp. 17830-17835, Nov. 2024.

[6] T. Fang, Y. Mao, S. Shen, Z. Zhu and B. Clerckx, Fully Connected Reconfigurable Intelligent Surface Aided Rate-Splitting Multiple Access for Multi-User Multi-Antenna Transmission, IEEE ICC, 2022.

[7] K. Chen, Y. Mao, L. Yin, C. Xu, and Y. Huang, Rate-splitting multiple access for simultaneous multi-user communication and multi-target sensing, in IEEE Transactions on Vehicular Technology, vol. 73, no. 9, pp. 13909-13914, Sept. 2024.

[8] Z. Qiu, Y. Mao, S. Ma, and B. Clerckx, Robust max-min fair beamforming design for rate splitting multiple access-aided visible light communications, in IEEE Internet of Things Journal, (early access).

[9] T. Fang and Y. Mao, Rate splitting multiple access: Optimal beamforming structure and efficient optimization algorithms, in IEEE Transactions on Wireless Communications, vol. 23, no. 10, pp. 15642-15657, Oct. 2024.


可重构智能超表面(Reconfigurable Intelligent Surface, RIS)辅助的无线网络

Our research focuses on advanced reconfigurable intelligent surfaces (RIS) architecture design and leveraging RIS to enhance signal quality, improve coverage, and optimize resource management in next-generation wireless networks. We have introduced a novel RIS architecture called Q-stem connected RIS, which integrates features from existing single-connected, tree-connected, and fully connected beyond-diagonal RIS (BD-RIS)[1]. Additionally, we have explored advanced resource allocation algorithms for BD-RIS and investigated its diverse applications in 6G networks[2]—[7].


Our Related Works:

[1] X. Zhou, T. Fang, and Y. Mao,“A Novel Q-stem Connected Architecture for Beyond-Diagonal Reconfigurable Intelligent Surfaces, IEEE International Conference on Communications (ICC) 2025.

[2] K. Zhao, Y. Mao, and Y. Shi, Simultaneously transmitting and reflecting reconfigurable intelligent surfaces empowered cooperative rate splitting with user relaying, in Entropy, vol. 26, no. 12, 2024.

[3] C. Tian, Y. Mao, K. Zhao, Y. Shi, and B. Clerckx, Reconfigurable intelligent surface empowered rate-splitting multiple access for simultaneous wireless information and power transfer, IEEE Wireless Communications and Networking Conference (WCNC), 2023.

[4] T. Fang, and Y. Mao, A low-complexity beamforming design for beyond-diagonal RIS aided multi-user networks, in IEEE Communications Letters, vol. 28, no. 1, pp. 203-207, Jan. 2024.

[5] K. Chen and Y. Mao, Transmitter side beyond-diagonal RIS for mmWave integrated sensing and communications, IEEE 25th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2024.

[6] J. He, Y. Mao, Y. Zhou, T. Wang and Y. Shi, Reconfigurable Intelligent Surfaces Empowered Green Wireless Networks With User Admission Control, in IEEE Transactions on Communications, vol. 71, no. 7, pp. 4062-4078, July 2023.

[7] A. Mishra, Y. Mao, C. D’Andrea, S. Buzzi and B. Clerckx, Transmitter Side Beyond-Diagonal Reconfigurable Intelligent Surface for Massive MIMO Networks, in IEEE Wireless Communications Letters, vol. 13, no. 2, pp. 352-356, Feb. 2024.


通信感知一体化网络(Integrated Sensing and Coommunication, ISAC)

Our research focuses on developing joint frameworks for seamless integration of sensing and communication (ISAC) tasks, interference management, resource allocation, signal processing techniques, and leveraging AI/ML for real-time ISAC adaptation in 6G networks. We have contributed to multiple access design for ISAC [1]—[4], RIS-assisted ISAC [5], etc.

Our Related Works:

[1] K. Chen, Y. Mao, W. Shin, B. Clerckx, Multiple Access for Integrated Sensing and Communications, in: A. Kaushik (eds) Integrated Sensing and Communications for Future Wireless Networks: Principles, Advances and Key Enabling Technologies, Academic Press,

     2025, Pages 349-379, ISBN 9780443221439.

[2] K. Chen, Y. Mao, L. Yin, C. Xu, and Y. Huang, Rate-splitting multiple access for simultaneous multi-user communication and multi-target sensing, in IEEE Transactions on Vehicular Technology, vol. 73, no. 9, pp. 13909-13914, Sept. 2024.

[3] L. Yin, Y. Mao, O. Dizdar and B. Clerckx, Rate-Splitting Multiple Access for 6G—Part II: Interplay With Integrated Sensing and Communications, in IEEE Communications Letters, vol. 26, no. 10, pp. 2237-2241, Oct. 2022.

[4] C. Xu, B. Clerckx, S. Chen, Y. Mao and J. Zhang, Rate-Splitting Multiple Access for Multi-Antenna Joint Radar and Communications, in IEEE Journal of Selected Topics in Signal Processing, vol. 15, no. 6, pp. 1332-1347, Nov. 2021.

[5] K. Chen and Y. Mao, Transmitter side beyond-diagonal RIS for mmWave integrated sensing and communications, IEEE 25th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2024.


空天地一体化网络(Space-Air-Ground Integrated Network, SAGIN)

Our research aims to develop unified frameworks that integrate satellite, aerial, terrestrial, and underground communication systems, enabling seamless and ubiquitous connectivity. We focus on optimizing resource management, mitigating interference, and leveraging emerging technologies like 6G and AI to enhance overall performance and reliability. Our contributions span several key areas, including interference management [1], distributed learning [2], and mobile edge computing within space-air-ground integrated networks (SAGIN) [3]. Additionally, we have designed a novel RIS-assisted transmission framework for the Internet of Underground Things [4].


Our Related Works:

[1] S. Zhang, Y. Mao, B. Clerckx and T. Q. S. Quek, Interference Management in Space-Air-Ground Integrated Networks With Fully Distributed Rate-Splitting Multiple Access, in IEEE Transactions on Wireless Communications, vol. 24, no. 1, pp. 149-164, Jan. 2025.

[2] Y. Wang, J. Zhu, Y. Mao, D. Wen, X. Tian and Y. Shi, Hierarchical Federated Edge Learning over Space-Air-Ground Integrated Networks, IEEE Globecom Workshops (GC Wkshps), Kuala Lumpur, Malaysia, 2023, pp. 190-196.

[3] Y. Huang, M. Dong, Y. Mao, W. Liu and Z. Gao, Distributed Multi-Objective Dynamic Offloading Scheduling for Air–Ground Cooperative MEC, in IEEE Transactions on Vehicular Technology, vol. 73, no. 8, pp. 12207-12212, Aug. 2024.

[4] K. Lin and Y. Mao, RIS-aided Wireless-Powered Backscatter Communications for Sustainable Internet of Underground Things, in IEEE Internet of Things Magazine, 2025.


优化理论(Optimization Theory)

Our research spans a variety of directions, including convex and non-convex optimization, optimization in machine learning, stochastic and robust optimization, distributed optimization, multi-objective optimization, etc. We have developed a bi-level globalization strategy to ensure global convergence in non-convex consensus optimization [1], optimal beamforming structures for generalized multi-group multicast [2] and rate-splitting [3], [4], efficient optimization framework for BD-RIS-assisted multi-user multi-antenna networks [5], [6].

Our Related Works:

[1] X. Du, J. Wang, X. Zhou, and Y. Mao, A bi-level globalization strategy for non-convex consensus ADMM and ALADIN, arXiv:2309.02660 (2023).

[2] T. Fang, and Y. Mao, Optimal beamforming structure and efficient optimization algorithms for generalized multi-group multicast beamforming optimization, arXiv:2312.16559 (2023).

[3] T. Fang and Y. Mao, Rate Splitting Multiple Access: Optimal Beamforming Structure and Efficient Optimization Algorithms, in IEEE Transactions on Wireless Communications, vol. 23, no. 10, pp. 15642-15657, Oct. 2024.

[4] F. Luo and Y. Mao, A Practical Max-Min Fair Resource Allocation Algorithm for Rate-Splitting Multiple Access, in IEEE Communications Letters, vol. 27, no. 12, pp. 3285-3289, Dec. 2023.

[5] X. Zhou, T. Fang and Y. Mao, “Joint Active and Passive Beamforming Optimization for Beyond Diagonal RIS-aided Multi-User Communications,” in IEEE Communications Letters, 2025.

[6] T. Fang and Y. Mao, A Low-Complexity Beamforming Design for Beyond-Diagonal RIS Aided Multi-User Networks, in IEEE Communications Letters, vol. 28, no. 1, pp. 203-207, Jan. 2024.


CS287: 网络智能 (2022年春季、2022年秋季;2023秋季;2024秋季;2025秋季

近年来,人工智能(AI)和机器学习(ML)的发展开启了“智能无线网络”的新时代,推动了人工智能技术用于解决无线网络中的网络规划、运营、管理和故障排除等挑战。智能无线网络的发展呈爆炸式增长,正在成为相关学术、研究和业界的最大趋势之一。本课程是为从事无线通信网络前沿工作的研究生设计的。本课程旨在提供机器学习的全面概述,以及它在处理通信网络物理层(PHY)和介质访问控制层(MAC)中的各种问题方面的应用,如收发机设计、信道估计、资源分配、语义通信、联邦学习等


EE150: 信号与系统 (2023年春季;2024春季;2025春季


学校服务

  • 大道书院本科生导师

  • 福建本科招生宣传组成员


科研服务

编辑(Editors)



主席(Chairs)

  • International Symposium on Wireless Commnuication Systems (ISWCS) 2024 Special Session on 'Rate-Splitting Multiple Access for 6G' (co-chaired with Prof. Bruno Clerckx).

  • IEEE International Conference on Communications (ICC) 2024 Workshop on 'Rate-Splitting Multiple Access for 6G' (co-chaired with Prof.Daniel Benevides da Costa, Prof. Bruno Clerckx, Prof.Zhaohui Yang).

  • International Conference on Wireless Communications and Signal Processing (WCSP) 2023 'Integrated Sensing, Communication and Computing Symposium' (co-chaired with Prof.Chau Yuen, Prof.Husheng Li, Prof. Husheng Li, Prof. Haixia Zhang, Prof. Xiaoming Che).

  • IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) 2023 Special Session on 'Rate-Splitting Multiple Access for 6G' (co-chaired with Prof.Zhaohui Yang, Prof.Bruno Clerckx, and Prof.Robert Schober).

  • International Symposium on Wireless Communication Systems (ISWCS) 2022 Special Session on Rate-Splitting Multiple Access for 6G (co-chaired with Prof. Bruno Clerckx).

  • IEEE International Conference on Communications (ICC) 2021 Workshop on Rate-Splitting (Multiple Access) for 6G (co-chaired with Prof. Bruno Clerckx, Prof. Mérouane Debbah, Prof. Daniel B. da Costa, Dr. Peiying Zhu).



讲座(Tutorials and Talks)



技术程序委员会(Technical Program Committee)


  • IEEE ICC 2021-2025

  • IEEE WCNC 2021-2024

  • IEEE Globecom 2021-2024

  • IEEE VTC-Fall 2023

  • IEEE ICCC 2023

  • IEEE PIMRC 2020


奖项与荣誉

  • 第十届中国科协青年托举人才, 2025

  • 世界前2%顶尖科学家, 2025

  • 全球一百位杰出6G女性, 2025

  • 上海科技大学年度优秀教师, 2024

  • 世界前2%顶尖科学家, 2024

  • 全球一百位杰出6G女性, 2024

  • 世界前2%顶尖科学家, 2023

  • IEEE Communications Letters模范审稿人, 2023

  • IEEE International Mediterranean Conference on Communications and Networking (MeditCom)最佳论文奖(华人首次), 2023

  • 上海科技大学年度优秀教师, 2022

  • IEEE Communications Letters模范审稿人, 2022

  • EURASIP Journal on Wireless Communications and Networking最佳期刊论文奖(唯一), 2022

  • IEEE Transactions on Communications模范审稿人, 2021

  • 上海市领军人才(海外)青年人才, 2021

科研项目

学术成果

毛奕婕教授已出版专著3部,发表顶尖期刊论文60余篇,总引5700余次,多篇入选ESI热点/高被引论文。





  • 1. Zhou, Jiasi;Hou, Wenjun;Mao, Yijie;Tellambura, Chintha;#, Securing Medical Sensor Data: A Novel Uplink Scheme With Rate Splitting and Active Intelligent Reflecting Surface, IEEE COMMUNICATIONS LETTERS, Mar 2024, 28(3):493-497
  • 2. Tianyu Fang;Yijie Mao;#, Optimal Beamforming Structure for Rate Splitting Multiple Access, ICASSP 2024 - 2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), Apr 2024,
  • 3. Yang Huang;Miaomiao Dong;Yijie Mao;Wenqiang Liu;Zhen Gao;#, Distributed Multi-Objective Dynamic Offloading Scheduling for Air-Ground Cooperative MEC, IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, PP(99):1-6
  • 4. Yuchen Zhang;Wanli Ni;Yijie Mao;Boyu Ning;Sa Xiao;Wanbin Tang;Dusit Niyato;#, Rate-Splitting Multiple Access for Covert Communications, IEEE WIRELESS COMMUNICATIONS LETTERS, 2024, PP(99):1-1
  • 5. Chen, Kexin;Mao, Yijie;Yin, Longfei;Xu, Chengcheng;Huang, Yang;#, Rate-Splitting Multiple Access for Simultaneous Multi-User Communication and Multi-Target Sensing, IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, PP(99):1-6
  • 6. Xu, Yunnuo;Yin, Longfei;Mao, Yijie;Shin, Wonjae;Clerckx, Bruno;#, Distributed Rate-Splitting Multiple Access for Multilayer Satellite Communications, IEEE TRANSACTIONS ON COMMUNICATIONS, 01 Oct 2024, 72(10)
  • 7. Shengyu Zhang;Shiyao Zhang;Yijie Mao;Lawrence K. Yeung;Bruno Clerckx;Tony Q.S. Quek;#, Transformer-based Channel Prediction for Rate-Splitting Multiple Access-enabled Vehicle-to-Everything Communication, IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, PP(99):1-1
  • 8. Zhang, Yao;Zhao, Haitao;Mao, Yijie;Xia, Wenchao;Lu, Weidang;Zhu, Hongbo;#, Rate-Splitting Multiple Access in Cell-Free Massive MIMO-URLLC Systems: Achievable Rate Analysis and Optimization, IEEE TRANSACTIONS ON COMMUNICATIONS, 01 Nov 2024, 72(11)
  • 9. Huiyun Xia;Yijie Mao;Xiaokang Zhou;Bruno Clerckx;Shuai Han;Cheng Li;#, Weighted Sum-Rate Maximization of Rate-Splitting Multiple Access with Confidential Messages, IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, PP(99):1-1
  • 10. Bruno Clerckx;Yijie Mao;Zhaohui Yang;Mingzhe Chen;Ahmed Alkhateeb;Liang Liu;Min Qiu;Jinhong Yuan;Vincent W. S. Wong;Juan Montojo;#, Multiple Access Techniques for Intelligent and Multifunctional 6G: Tutorial, Survey, and Outlook, PROCEEDINGS OF THE IEEE, 01 Jul 2024, 112(7)
  • 11. Yiwen Wang;Yijie Mao;Sijie Ji;#, RS-BNN: A Deep Learning Framework for the Optimal Beamforming Design of Rate-Splitting Multiple Access, IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 01 Nov 2024, 73(11):1-6
  • 12. Fang, Tianyu;Mao, Yijie;#, Rate Splitting Multiple Access: Optimal Beamforming Structure and Efficient Optimization Algorithms, IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, PP(99):1-1
  • 13. Chen, Kexin;Mao, Yijie;#, Transmitter Side Beyond-Diagonal RIS for mmWave Integrated Sensing and Communications, IEEE INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (SPAWC), 2024,
  • 14. Chen, Kexin;Mao, Yijie;#, Transmitter Side Beyond-Diagonal RIS for mmWave Integrated Sensing and Communications, IEEE WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS, SPAWC, 2024, 951-955
  • 15. Yijie Mao;Bruno Clerckx;Derrick Wing Kwan Ng;Wolfgang Utschick;Ying Cui;Timothy N. Davidson;#, Guest Editorial Special Issue on Rate-Splitting Multiple Access for Future Green Communication Networks, IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, 01 Dec 2024, 8(4):1291-1292
  • 16. Zhengqing Qiu;Yijie Mao;Shuai Ma;Bruno Clerckx;#, Robust Max-Min Fair Beamforming Design for Rate Splitting Multiple Access-aided Visible Light Communications, IEEE INTERNET OF THINGS JOURNAL, 2024, PP(99)
  • 17. Zhao, Kangchun;Mao, Yijie;Shi, Yuanming;#, Simultaneously Transmitting and Reflecting Reconfigurable Intelligent Surfaces Empowered Cooperative Rate Splitting with User Relaying, ENTROPY, 01 Dec 2024, 26(12)
  • 18. Xiaohua Zhou;Tianyu Fang;Yijie Mao;#, Rate-Splitting Multiple Access for Green Communications: A Survey and Robust Beamforming Design, IEEE INTERNET OF THINGS JOURNAL, 2025, PP(99)
  • 19. Xiaohua Zhou;Tianyu Fang;Yijie Mao;#, Joint Active and Passive Beamforming Optimization for Beyond Diagonal RIS-aided Multi-User Communications, IEEE COMMUNICATIONS LETTERS, 2025, PP(99)
  • 2025年9月,欢迎新同学加入!


    2025年6月,祝贺发程和一雯硕士毕业!

    2025年6月,康淳、晓华、可欣、正清在加拿大蒙特利尔市参加2025年IEEE ICC会议。


    2025年6月,正清在加拿大蒙特利尔市ICC会场介绍我们发表的论文。



    2025年6月,晓华在加拿大蒙特利尔市ICC会场介绍我们发表的论文。


    2024年9月,晓华和可欣在意大利卢卡市参加IEEE SPAWC 2024,海报展示我们发表的论文。


    2024年6月,祝贺程中硕士毕业!


    2024年6月,毛老师作为信息学院教授代表发言。


    每周一次的运动团建。