刘思廷
助理教授、研究员、博导
博士毕业院校: 加拿大阿尔伯塔大学
电话: 021-20684852
办公室: 信息学院3-322
专业方向: 数字集成电路与系统
单位:
所属课题组:
研究方向: AI芯片、新型计算机体系结构,包括但不限于类脑计算、一元计算、量子计算、概率计算等
招聘主页:
简介
团队
科研
教学
服务
成果
论文
影集
报道
主要岗位职责(A角)
兼任岗位职责(B角)
兼任岗位职业(C角)

刘思廷教授本科和硕士均毕业于哈尔滨工业大学;受国家留学基金委资助在加拿大阿尔伯塔大学完成博士学习,主要研究方向为数字集成电路与系统、新型计算机体系结构等;博士毕业后在加拿大麦吉尔大学完成博士后研究;并于2021年加入上海科技大学信息学院后摩尔中心。具体研究内容包括一元计算、AI加速芯片、新型计算机体系架构设计等。

发表高水平国际会议与期刊二十余篇,并曾担任知名国际会议nanoarch、APCCAS、DFT、ICCAD等TPC委员、2022/2023 nanoarch publicity chair、GLSVLSI session chair等。


在校生
  • 姓名:倪兆君
    身份:博士研究生
    教育背景:
    邮箱:
    研究方向:AI芯片、新型计算架构、一元计算
  • 姓名:王宇同
    身份:硕士研究生
    教育背景:
    邮箱:
    研究方向:AI芯片、稀疏矩阵运算硬件加速、一元计算可靠性
  • 姓名:余正坤
    身份:硕士研究生
    教育背景:
    邮箱:
    研究方向:一元计算体系架构
  • 姓名:龚雨陶
    身份:硕士研究生
    教育背景:
    邮箱:
    研究方向:一元计算架构、AI加速器
  • 姓名:严茹玥
    身份:硕士研究生
    教育背景:
    邮箱:
    研究方向:AI芯片、稀疏矩阵运算加速
  • 姓名:顾圣崴
    身份:硕士研究生
    教育背景:
    邮箱:
    研究方向:基于RISC-V的定制化硬件设计
  • 姓名:施衡
    身份:硕士研究生
    教育背景:
    邮箱:
    研究方向:近存计算、低功耗设计、概率计算
  • 姓名:刘乐涵
    身份:硕士研究生
    教育背景:
    邮箱:
    研究方向:
校友
  • 姓名:倪兆君
    身份:博士研究生
    教育背景:
    研究方向:AI芯片、新型计算架构、一元计算
    毕业去向:
  • 姓名:王宇同
    身份:硕士研究生
    教育背景:
    研究方向:AI芯片、稀疏矩阵运算硬件加速、一元计算可靠性
    毕业去向:
  • 姓名:余正坤
    身份:硕士研究生
    教育背景:
    研究方向:一元计算体系架构
    毕业去向:
  • 姓名:龚雨陶
    身份:硕士研究生
    教育背景:
    研究方向:一元计算架构、AI加速器
    毕业去向:
  • 姓名:严茹玥
    身份:硕士研究生
    教育背景:
    研究方向:AI芯片、稀疏矩阵运算加速
    毕业去向:
  • 姓名:顾圣崴
    身份:硕士研究生
    教育背景:
    研究方向:基于RISC-V的定制化硬件设计
    毕业去向:
  • 姓名:施衡
    身份:硕士研究生
    教育背景:
    研究方向:近存计算、低功耗设计、概率计算
    毕业去向:
  • 姓名:刘乐涵
    身份:硕士研究生
    教育背景:
    研究方向:
    毕业去向:

本科生课程 CS110 计算机体系结构I

研究生课程 EE219 智能计算系统



以往成果:


期刊:

1. S. Liu, W. J. Gross and J. Han, Introduction to Dynamic Stochastic Computing, in IEEE Circuits and Systems Magazine, vol. 20, no. 3, pp. 19-33, thirdquarter 2020, doi: 10.1109/MCAS.2020.3005483.

2. Y. Liu, S. Liu, Y. Wang, F. Lombardi and J. Han, A Survey of Stochastic Computing Neural Networks for Machine Learning Applications, in IEEE Transactions on Neural Networks and Learning Systems, vol. 32, no. 7, pp. 2809-2824, July 2021, doi: 10.1109/TNNLS.2020.3009047.

3. S. Liu, H. Jiang, L. Liu and J. Han, Gradient Descent Using Stochastic Circuits for Efficient Training of Learning Machines, in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 37, no. 11, pp. 2530-2541, Nov. 2018, doi: 10.1109/TCAD.2018.2858363.

4. S. Liu and J. Han, Toward Energy-Efficient Stochastic Circuits Using Parallel Sobol Sequences, in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 26, no. 7, pp. 1326-1339, July 2018, doi: 10.1109/TVLSI.2018.2812214.

5. Y. Liu, S. Liu, Y. Wang, F. Lombardi and J. Han, A Stochastic Computational Multi-Layer Perceptron with Backward Propagation, in IEEE Transactions on Computers, vol. 67, no. 9, pp. 1273-1286, 1 Sept. 2018, doi: 10.1109/TC.2018.2817237.

会议:

1. S. Liu and J. Han, Dynamic Stochastic Computing for Digital Signal Processing Applications, 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 2020, pp. 604-609, doi: 10.23919/DATE48585.2020.9116562.

2. S. Liu and J. Han, Energy efficient stochastic computing with Sobol sequences, Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017, Lausanne, Switzerland, 2017, pp. 650-653, doi: 10.23919/DATE.2017.7927069.

3. S. Liu and J. Han, Hardware ODE solvers using stochastic circuits, 2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC), Austin, TX, USA, 2017, pp. 1-6, doi: 10.1145/3061639.3062258.



  • 1. Liu, Cheng;Gao, Zhen;Liu, Siting;Ning, Xuefei;Li, Huawei;Li, Xiaowei;#, Special Session: Fault-Tolerant Deep Learning: A Hierarchical Perspective, PROCEEDINGS OF THE IEEE VLSI TEST SYMPOSIUM, 2022, 2022-April
  • 2. Xiaochen Tang;Shanshan Liu;Farzad Niknia;Ziheng Wang;Siting Liu;Pedro Reviriego;Fabrizio Lombardi;#, Delta Sigma Modulator-based Dividers for Accurate and Low Latency Stochastic Computing Systems, IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, 2023, 13(1):1-1
  • 3. Yongqiang Zhang;Siting Liu;Jie Han;Zhendong Lin;Shaowei Wang;Xin Cheng;Guangjun Xie;#, An Energy-Efficient Binary-Interfaced Stochastic Multiplier Using Parallel Datapaths, IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 28 Feb 2023,
  • 4. Li, Han;Shi, Heng;Jiang, Honglan;Liu, Siting;#, HSB-GDM: A Hybrid Stochastic-Binary Circuit for Gradient Descent with Momentum in the Training of Neural Networks, PROCEEDINGS OF THE 17TH ACM INTERNATIONAL SYMPOSIUM ON NANOSCALE ARCHITECTURES, NANOARCH 2022, 07 Dec 2022,
  • 5. Wang, Ziheng;Niknia, Farzad;Liu, Shanshan;Jiang, Honglan;Liu, Siting;Reviriego, Pedro;Lombardi, Fabrizio;#, Feature-Embedding Triplet Networks with a Separately Constrained Loss Function, PROCEEDINGS - IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, 2023, 2023-May
  • 6. Peng, Yibo;Liu, Siting;Kovanis, Vassilios;Wang, Cheng;#, Uniform spike trains in optically injected quantum cascade oscillators, CHAOS, 2023, 33(12):123127
  • 7. Shanshan Liu;Josep L. Rosselló;Siting Liu;Xiaochen Tang;Joan Font-Rosselló;Christian F. Frasser;Weikang Qian;Jie Han;Pedro Reviriego;Fabrizio Lombardi;#, From Multipliers to Integrators: a Survey of Stochastic Computing Primitives, IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2024, 23:238-249
  • 8. Xinkuang Geng;Siting Liu;Jianfei Jiang;Kai Jiang;Honglan Jiang;#, Compact Powers-of-Two: An Efficient Non-Uniform Quantization for Deep Neural Networks, 2024 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE), 2024,
  • 9. Zhu, Yankun;Liu, Siting;Yang, Liyu;Zhou, Pingqiang;#, LDL-SCA: Linearized Deep Learning Side-Channel Attack Targeting Multi-tenant FPGAs, PROCEEDINGS OF THE ACM GREAT LAKES SYMPOSIUM ON VLSI, GLSVLSI, 2024, 583-587
  • 10. Wang, Yutong;Ni, Zhaojun;Liu, Siting;#, Can Stochastic Computing Truly Tolerate Bit Flips?, PROCEEDINGS OF THE ACM GREAT LAKES SYMPOSIUM ON VLSI, GLSVLSI, 2024, 718-723
  • 11. Zhang, Tingting;Zhang, Hongqiao;Yu, Zhengkun;Liu, Siting;Han, Jie;#, A High-Performance Stochastic Simulated Bifurcation Ising Machine, PROCEEDINGS OF THE 61ST ACM/IEEE DESIGN AUTOMATION CONFERENCE, DAC 2024, 2024,
  • 12. Geng, Xinkuang;Liu, Siting;Liu, Leibo;Han, Jie;Jiang, Honglan;#, QUQ: Quadruplet Uniform Quantization for Efficient Vision Transformer Inference, PROCEEDINGS - DESIGN AUTOMATION CONFERENCE, 2024,
  • 13. Wang, Ziheng;Niknia, Farzad;Liu, Shanshan;Jiang, Honglan;Liu, Siting;Reviriego, Pedro;Zhou, Jun;Lombardi, Fabrizio;#, Adaptive Separately Constrained Triplet Loss (A-SCTL) for High-Performance Triplet Networks, IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2025, 24:157-165
  • 14. Heng Shi;Zhengkun Yu;Tingting Zhang;Jie Han;Yumeng Yang;Siting Liu;#, An SRAM-based Stochastic Number Generator for Stochastic Computing, 2025 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 28 May 2025,