Boris Houska
副教授、研究员、博导
博士毕业院校: 比利时鲁汶大学
电话: 021-20685395
办公室: 信息学院1D-201C室
专业方向:
单位:
所属课题组:
研究方向: 优化控制,模型预测控制,鲁棒优化
招聘主页:
简介
团队
科研
教学
服务
成果
论文
影集
报道
主要岗位职责(A角)
兼任岗位职责(B角)
兼任岗位职业(C角)

Dr. Houska的研究方向包括数值优化和最优控制,鲁棒和全局优化,以及快速模型预测控制算法。

Dr. Houska于2007年在海德堡大学获数学和物理硕士学位,2011年在KU Leuven获得电气工程博士学位。2012年至2013年,他在伦敦帝国理工学院过程系统工程中心担任博士后研究员。随后,2013年至2014年间,Dr. Houska担任上海交通大学副教授。此外,他曾担任弗莱堡高级研究所以及弗莱堡大学微系统工程研究所(均在2014年内)的访问教授并且开展了多次短期学术访问交流活动,例如2017年冬季在加州大学伯克利分校以及2018年夏季在伦敦帝国理工学院的访问。

Dr. Houska曾获得的奖项包括:ICCOPT连续优化方面的青年研究者最佳论文奖(入围者前3名), 用于动态系统的稳健和全局优化的下一代算法项目曾获玛丽 - 居里奖学金,以及上海科技大学优秀教授等荣誉称号。他关于ACADO工具包的论文---自动控制和动态优化的开源框架已被Web of Science列为高引用论文。

Dr. Houska is an Associate Professor at the School of Informations Science and Technology at ShanghaiTech University. His research interests include numerical optimization and optimal control, robust and global optimization, as well as fast model predictive control algorithms.
Dr. Houska received a diploma in mathematics and physics from the University of Heidelberg in 2007, and a Ph.D. in Electrical Engineering from KU Leuven in 2011. From 2012 to 2013 he was a postdoctoral researcher at the Centre for Process Systems Engineering at Imperial College London. Subsequently, from 2013-14, Dr. Houska has worked as an associate professor at Shanghai Jiao Tong University. Moreover, he has held visiting professor positions at the Freiburg Institute for Advanced Studies as well as at the Institute for Microsystems Engineering at the University of Freiburg (both in 2014) and various shorter academic visiting appointments, e.g., at UC Berkeley during Winter 2017 and Imperial College London during Summer 2018.
Dr. Houska has been recipient of awards including ICCOPT Best Paper Prize for a Young Researcher in Continuous Optimization (Finalist, Top 3), a Marie-Curie Fellowship for the project Next Generation Algorithms for Robust and Global Optimization of Dynamic Systems, as well as an ShanghaiTech Excellent Professor Award from ShanghaiTech University. His paper on ACADO  Toolkit---An  open  source  framework  for automatic control and dynamic optimization has been listed as highly cited paper by Web of Science.