吕宏鸣
助理教授、研究员、博导
博士毕业院校:中国清华大学
电话:(021) 20684855
办公室:信息学院3-310室
招聘主页:
研究领域
个人简历
代表性论文

 RESEARCH INTERESTS

  • 数模混合集成电路设计

  • 射频集成电路设计

  • 植入式医疗芯片

  • 脑机接口芯片


BIOGRAPHY

吕宏鸣博士于电子科技大学获得学士学位(2010),于清华大学获得博士学位(2015),2015至2020年先后在美国加州大学圣地亚哥分校(UCSD)和加州大学洛杉矶分校(UCLA)从事博士后研究。目前担任上海科技大学信息学院研究员、助理教授、博士生导师,医疗集成电路与微系统实验室PI,同时入选上海脑科学与类脑研究中心“求索杰出青年”计划,担任脑机接口与类脑智能方向“求索”研究组长。

医疗集成电路与微系统实验室的主要研究方向为模拟、射频、数模混合集成电路设计,致力于面向脑机接口、植入式医疗等应用的专用芯片和系统研发。实验室目前承担科技部科技创新2030青年科学家项目、临港国家实验室“求索”开放课题、中科院先导研发计划等纵向科研项目,研究课题涉及混合信号集成电路设计、脑科学等具有重大发展前景的研究领域。已在IEEE T-BioCAS, T-MTT, MWCL, Nature Communications等权威期刊和会议发表论文30余篇,申请发明专利十余项。部分专利成果已实现转化,包括美国医疗电子公司 Maxwell Biomedical Inc.等。实验室现有硕博研究生10余人,毕业于浙江大学、天津大学、上海科技大学等“双一流”高校。

吕宏鸣博士承担的教学工作包括:EE217射频集成电路设计(研究生课程),EE112模拟集成电路设计I(本科生课程)

SELECTED PUBLICATIONS

  1. Lyu, H. and Babakhani, A., 2021. A 13.56-MHz –25-dBm-Sensitivity Inductive Power Receiver System-on-a-Chip with a Self-Adaptive Successive Approximation Resonance Compensation Front-End for Ultra-Low-Power Medical Implants. IEEE Transactions on Biomedical Circuits and Systems, 15(1), pp 80-90.

  2. Lyu, H., Wang, Z. and Babakhani, A., 2020. A UHF/UWB Hybrid RFID Tag With a 51-m Energy-Harvesting Sensitivity for Remote Vital-Sign Monitoring. IEEE Transactions on Microwave Theory and Techniques, 68(11), pp.4886-4895.

  3. Lyu, H., Gad, P., Zhong, H., Edgerton, V.R. and Babakhani, A., 2019. A 430-MHz wirelessly powered implantable pulse generator with intensity/rate control and sub-1 μA quiescent current consumption. IEEE transactions on biomedical circuits and systems, 13(1), pp.180-190.

  4. Lyu, H., Wang, J., La, J.H., Chung, J.M. and Babakhani, A., 2018. An energy-efficient wirelessly powered millimeter-scale neurostimulator implant based on systematic codesign of an inductive loop antenna and a custom rectifier. IEEE transactions on biomedical circuits and systems, 12(5), pp.1131-1143.

  5. Lyu, H., Liu, X., Sun, Y., Jian, Z. and Babakhani, A., 2019. A 915-MHz Far-Field Energy Harvester With− 22-dBm Sensitivity and 3-V Output Voltage Based on Antenna-and-Rectifier Codesign. IEEE Microwave and Wireless Components Letters, 29(8), pp.557-559.

  6. Lyu, H., John, M., Burkland, D., Greet, B., Post, A., Babakhani, A. and Razavi, M., 2020. Synchronized Biventricular Heart pacing in a closed-chest porcine Model based on Wirelessly powered Leadless pacemakers. Scientific reports, 10(1), pp.1-9.

  7. Lyu, H., Liu, X. and Babakhani, A., 2019. A 100-M/s 2.6-pJ/pulse compact UWB impulse transmitter based on antenna-and-pulse-generator codesign. IEICE Electronics Express, 16(24), pp.20190672-20190672.

  8. Lyu, H., Jian, Z., Liu, X., Sun, Y. and Babakhani, A., 2019. Towards the implementation of a wirelessly powered dielectric sensor with digitized output for implantable applications. IEEE Sensors Letters, 3(3), pp.1-4.

  9. Lu, Y.†, Lyu, H. †, Richardson, A.G., Lucas, T.H. and Kuzum, D., 2016. Flexible neural electrode array based-on porous graphene for cortical microstimulation and sensing. Scientific reports, 6, p.33526. († equal contribution)

  10. Lyu, H., Wu, H., Liu, J., Lu, Q., Zhang, J., Wu, X., Li, J., Ma, T., Niu, J., Ren, W. and Cheng, H., 2015. Double-balanced graphene integrated mixer with outstanding linearity. Nano letters, 15(10), pp.6677-6682.

  11. Lyu, H., Lu, Q., Liu, J., Wu, X., Zhang, J., Li, J., Niu, J., Yu, Z., Wu, H. and Qian, H., 2016. Deep-submicron Graphene Field-Effect Transistors with State-of-Art fmax. Scientific reports, 6, p.35717.