Discrete Mathematics
Graph Theory

Liangfeng Zhang
School of Information Science and Technology
ShanghaiTech University
Planar Graphs

Definition: Let \(G = (V, E) \) be a graph.

- **planar**: \(G \) can be drawn in the plane without any edges crossing.

Applications

- design of electronic circuits and road networks
Example: \(K_{3,3} \) is not planar.
Example

Example: \(K_5 \) is not planar.
Example
Euler’s Formula

Theorem: Let G be a *connected planar simple* graph

- e: # of edges in G
- v: # of vertices in G
- r: # of regions in a planar representation of G.
 - Then $r = e - v + 2$.

6 regions from the planar representation of a graph
Euler’s Formula

• Construct a sequence of graphs $G_1, ..., G_e$
 • G_1 has one edge
 • for $i = 2$ to n do
 • find edge $\in E$, edge $= \{u, v\} \not\in E(G_{i-1}), \{u, v\} \cap V(G_{i-1}) \neq \emptyset$
 • $G_i = G_{i-1} + \text{edge}$
 • $v_i := |V(G_i)|, e_i := |E(G_i)|, r_i = |R(G_i)|$ for $i \in [e]$
• Show that $r_i = e_i - v_i + 2$ for every i
 • $i = 1$: $r_i = 1, e_i = 1, v_i = 2$
 • $i = 2$: $r_i = 1, e_i = 2, v_i = 3$
• Suppose that $r_i = e_i - v_i + 2$.
 • $r_{i+1} = e_{i+1} - v_{i+1} + 2$
 • Let $e_{i+1} = \{u, v\}: \{u, v\} \subseteq V(G_i), \ |\{u, v\} \cap V(G_i)| = 1$
 • $\{u, v\} \subseteq V(G_i): r_{i+1} = r_i + 1; e_{i+1} = e_i + 1; v_{i+1} = v_i$
 • $|\{u, v\} \cap V(G_i)| = 1: r_{i+1} = r_i, e_{i+1} = e_i + 1, v_{i+1} = v_i + 1$
 • In both cases, $r_{i+1} = e_{i+1} - v_{i+1} + 2$
Euler’s Formula

Corollaries: Let G be a connected planar simple graph.

- If $v = |V(G)| \geq 3$, then $e := |E(G)| \leq 3v - 6$.
 - Let P_1, \ldots, P_r be the regions obtained from G
 - $N_i := \#$ of edges in E that are on the border of P_i
 - $N_i \geq 3$ for every $i \in [r]$
 - $M_j := \#$ of times of the jth edge being counted
 - $M_j = 2$
 - $3r \leq N_1 + \cdots + N_r = M_1 + \cdots + M_e = 2e$
 - $r = e - v + 2$
Corollaries: Let G be a connected planar simple graph.

- There is a vertex u such that $\text{deg}(u) \leq 5$.
 - When G has < 3 vertices, the statement is true.
 - When G has ≥ 3 vertices, $\text{deg}(u) \geq 6, \forall u \in V \Rightarrow 2e = \sum u \text{deg}(u) \geq 6v$
 - However, $e \leq 3v - 6$ must hold. A contradiction appears.
- $v = |V(G)| \geq 3$ and $\not\exists$ circuits of length 3, then $e \leq 2v - 4$.
 - $N_i \geq 4$ for every $i \in [r]$
 - $4r \leq N_1 + \cdots + N_r = M_1 + \cdots + M_e = 2e$
 - $r = e - v + 2$
 - $e \leq 2v - 4$
How to Decide Planar Graphs

Definition: Let $G = (V, E)$ be a graph and $\{u, v\} \in E$.

- **elementary subdivision**: $G' = (V \cup \{w\}, E - \{u, v\} + \{u, w\} + \{v, w\})$
- **homeomorphic**: two graphs can be obtained from the same graph via elementary subdivisions
Kuratowski's theorem

Theorem: Let $G = (V, E)$ be a graph.
- G is nonplanar iff it has a subgraph homeomorphic to $K_{3,3}$ or K_5.
Kuratowski's theorem

Theorem: Let $G = (V, E)$ be a graph.
- G is nonplanar iff it has a subgraph homeomorphic to $K_{3,3}$ or K_5.
Graph Coloring

Definition: Let $G = (V, E)$ be a simple graph.

- **k-coloring:** a map $f : V \to [k]$ s.t. $\{u, v\} \in E \Rightarrow f(u) \neq f(v)$
- **chromatic number ($\chi(G)$):** the least k s.t. G has a k-coloring.

\[
\chi(G) = 3
\]

If G has subgraph isomorphic to K_t, then $\chi(G) \geq t$
Graph Coloring

Definition: Let $G = (V, E)$ be a simple graph.

- **k-coloring:** a map $f : V \rightarrow [k]$ s.t. $\{u, v\} \in E \Rightarrow f(u) \neq f(v)$
- **chromatic number ($\chi(G)$):** the least k s.t. G has a k-coloring.

\[
\chi(G) = 4
\]
Graph Coloring

Example:

- $\chi(K_{m,n}) = 2$,
- $\chi(K_n) = n$
- $\chi(C_n) = 2$ if $2|n$; $\chi(C_n) = 3$ if $2|(n - 1)$
The Five Color Theorem

The Four Color Theorem: If G is planar, then $\chi(G) \leq 4$.

The Five Color Theorem: If G is planar, then $\chi(G) \leq 5$.

- $|V| \leq 5 \Rightarrow \chi(G) \leq 5$
- Suppose that $\chi(G) \leq 5$ when $|V| \leq k$
- Need to prove for $|V| = n = k + 1$
- $\exists \ v \in V, \deg(v) \leq 5$
- $H := G - v$ has a 5-coloring $c : V(H) \rightarrow [5]$
- If $|\{c(u) : u \in N(v)\}| \leq 4$, c can be extended to a 5-coloring of G
- Suppose that $|\{c(u) : u \in N(v)\}| = 5$
 - $N(v) = \{v_1, ..., v_5\}, c(v_i) = i, \forall i \in [5]$
The Five Color Theorem

- Every $v_1 \to v_3$ path $P \subseteq H$ separates v_2 from v_4
 - $C := vv_1 P v_3 v$
 - v_2, v_4 are in different faces of C
- $i, j \in [5]$: $H_{i,j}$ subgraph of H induced by vertices with color $\{i, j\}$
 - Let $v_1 \in C_1$, a component of $H_{1,3}$
 - $v_3 \notin C_1 \Rightarrow$ change 1 to 3, 3 to 1 in C_1 gives a 5-coloring of H
 - Let $c(v) = 1$. This is a 5-coloring of G
Suppose that $P \subseteq C_1$

$v v_1 P v_3 v$ separates v_2, v_4 and $P \cap H_{2,4} = \emptyset \Rightarrow v_2, v_4$ are in different components of $H_{2,4}$

In the component of v_2 interchange 2,4

Let $c(v) = 2$. This gives a 5-coloring of G.
Problem:
• How can the final exams at a university be scheduled so that no student has two exams at the same time?
Trees

Definition:
• A *tree* is a connected undirected graph with no simple circuits.

\[
\begin{align*}
&\text{tree} & \text{tree} & \exists \text{ circuits} & \text{not connected}
\end{align*}
\]
Characterizations

Theorem: Let $G = (V, E)$ be an undirected graph.

- G is a tree iff there is a unique simple path between any 2 vertices.

 - \Rightarrow: G is a tree \Rightarrow G is connected
 - $\forall u, v \in V, \exists$ a simple path P: $\{u, x_1\}, \{x_1, x_2\}, \ldots, \{x_{k-1}, x_k = v\}$
 - Suppose \exists another simple path P': $\{u, y_1\}, \{y_1, y_2\}, \ldots \{y_{l-1}, y_l = v\}$
 - Let $a := \min\{i \geq 1: x_i \in \{y_1, \ldots, y_{l-1}, y_l\}\}$ and $x_a = y_b$
 - $u, x_1, \ldots, x_a, y_{b-1}, \ldots, y_1, u$ is a simple circuit in G

 - \Leftarrow: $\forall u, v \in V, \exists$ path $u \rightarrow v \Rightarrow G$ is connected
 - Suppose there is a simple circuit u, x_1, \ldots, x_k, u in G
 - $k \geq 2$
 - u, x_1 and u, x_k, \ldots, x_1 are two simple paths from $u \rightarrow v$
Characterizations

Theorem: Let $G = (V, E)$ be an undirected graph.

- G is a tree iff G is connected and $G - e$ is disconnected $\forall e \in E$.

 - \Rightarrow: G is a tree $\Rightarrow G$ is connected
 - Let $e = \{u, v\} \in E$.
 - If $G - e$ is connected, then \exists a simple path u, x_1, \ldots, x_k, v
 - Then G has a circuit $u, x_1, \ldots, x_k, v, u$
 - G has a simple circuit

 - \Leftarrow: need to show that G has no simple circuits
 - Suppose there is a simple circuit u, x_1, \ldots, x_k, u in G
 - $G - \{u, x_1\}$ is still connected, a contradiction.
Characterizations

Theorem: Let \(G = (V, E) \) be an undirected graph.

- \(G \) is a tree iff \(G \) is connected, has no simple circuits but \(G + e \) has a simple circuit \(\forall e \notin E \).

- \(\Rightarrow: G \) is a tree \(\Rightarrow G \) is connected

 - Let \(e = \{u, v\} \notin E \).

 - \(G \) is a tree \(\Rightarrow \exists \) a simple path \(u, x_1, ..., x_k, v \)

 - \(u, x_1, ..., x_k, v, u \) is a circuit in \(G + e \)

 - \(G + e \) has a simple circuit

- \(\Leftarrow: \) obvious, by definition.
Characterizations

Theorem: Let $G = (V, E)$ be a connected undirected graph.

- V can be enumerated as $v_1, ..., v_n$ s.t. $G[v_1, ..., v_i]$ is connected
 - Pick $v_1 \in V$ arbitrarily.
 - $\exists v_2 \in V - v_1$ such that $v_1 v_2 \in E$. $G[v_1, v_2]$ is connected.
 - Suppose we have chosen $v_1, ..., v_i$
 - Need to choose v_{i+1}. Pick $u \in V - \{v_1, ..., v_i\}$
 - G is connected $\Rightarrow \exists$ path $u \rightarrow v_1$
 - Let v_{i+1} be the last vertex on $u \rightarrow v_1$ and in $G - G[v_1, ..., v_i]$
 - v_{i+1} has a neighbor in $G[v_1, ..., v_i]$

Theorem: Let $G = (V, E)$ be a tree with n vertices.

- We can enumerate $V = \{v_1, ..., v_n\}$ such that v_i has a unique neighbor (no circuit) in $\{v_1, ..., v_{i-1}\}$ for every $i \in \{2, ..., n\}$.
Characterizations

Theorem: Let $G = (V, E)$ be a connected undirected graph and $|V| = n$.

- G is a tree iff G has $n - 1$ edges.
 - \Rightarrow: $V = (v_1, \ldots, v_n)$ such that v_i has a unique neighbor in $\{v_1, \ldots, v_{i-1}\}$ for every $i \geq 2$. Hence, there are exactly $n - 1$ edges.
 - \Leftarrow: $V = (v_1, \ldots, v_n)$ such that $G[v_1, \ldots, v_i]$ is connected $\forall i$
 - There are $n - 1$ edges.
 - v_i is adjacent to exactly 1 vertex in $\{v_1, \ldots, v_{i-1}\}$, $\forall i$
 - Suppose $v_{i_1}, v_{i_2} \ldots, v_{i_k}, v_{i_1}$ is a simple circuit.
 - v_{i_k} is adjacent to two vertices in $\{v_1, \ldots, v_{i_k-1}\}$
Forest

Definition: A forest is a graph whose components are trees.

A forest of 3 trees