Discrete Mathematics
Graph Theory

Liangfeng Zhang
School of Information Science and Technology
ShanghaiTech University
Theorem: $G = (V = \{v_1, \ldots, v_n\}, E)$ is a graph with adjacency matrix A.

- directed or undirected edges, multiple edges and loops allowed
- The number of different paths of length r from v_i to v_j is $[A^r]_{i,j}$
 - $r = 1$: # of paths $v_i \rightarrow v_j$ is $[A]_{i,j}$
 - Induction hypothesis: true for r
 - Need to prove for $r + 1$.
 - $\forall k \in [n], [A^r]_{i,k} = \#$ of paths $v_i \rightarrow v_k$ of length r
 - Let $P = v_i, \ldots, x, v_j$ be any path $v_i \rightarrow v_j$ of length $r + 1$
 - $N_k : \#$ of different P with $x = v_k, k \in [n]$
 - $N_k = [A^r]_{i,k} \cdot [A]_{k,j}$ for every $k \in [n]$
 - $N_1 + \cdots + N_n = [A^{r+1}]_{i,j}$
Number of Paths

- # of paths $a \rightarrow d$ of length 4 is $[A^4]_{1,4} = 8$
- $ababbd, acabbd; abdbbd, acdbbd$
- $abaccd, acaccd; abdcd, acdcd$
Euler Paths and Circuits

Definition: Let $G = (V, E)$ be a (directed or undirected) graph.

- **Euler circuit:** a simple circuit that contains every edge of G.
- **Euler path:** a simple path that contains every edge of G.

![Diagram of Euler circuits and paths in graphs](image-url)
Euler Circuits

Theorem: \(G = (V, E) \): connected (undirected) multigraph, \(|V| \geq 2 \).

- \(G \) has an Euler circuit iff \(2 \mid \deg(u) \) for every \(u \in V \).

 \(\Rightarrow \): Let \(\{x_0, x_1\}, \ldots, \{x_{i-1}, x_i\}, \ldots, \{x_{n-1}, x_n\} \) be an Euler circuit, \(x_0 = x_n \)

 - Every \(x_i \) appears an even number of times in the circuit

 - This contributes a even number to \(\deg(x_i) \)

 - Every vertex \(x_i \) has an even degree

 \(\Leftarrow \): Let \(\{x_0, x_1\}, \ldots, \{x_{n-1}, x_n\} \) be a longest simple path/circuit in \(G \)

 - If \(x_n \neq x_0 \), then \(\deg(x_n) \) must be odd. Hence, \(x_n = x_0 \)

 - If \(\exists e = \{y, x_i\} \in E \) such that \(e \) does not occur in the circuit

 - \(y, x_i, x_{i+1}, \ldots, x_n, x_0, \ldots, x_{i-1}, x_i \) is a longer simple path/circuit
Constructing Euler Circuits

Hierholzer's Algorithm:

• Input: $G = (V, E)$, a connected multigraph, $2|\text{deg}(x)|, \forall x \in V$
• Output: an Euler circuit
 • $\text{circuit} := \text{a circuit in } G$
 • $H := G - \text{circuit} - \text{isolated vertices}$
 • while H has edges do
 • $\text{subcircuit} := \text{a circuit in } H$ that intersects circuit
 • $H := H - \text{subcircuit} - \text{isolated vertices}$
 • $\text{circuit} := \text{circuit} \cup \text{subcircuit}$
 • return circuit

Analysis: We can always find a subcircuit as long as $H \neq \emptyset$

• Every component of H satisfies the condition of the Theorem.
• ≥ 2 edges are added in each iteration. The worst case complexity is $O(|E|)$
Example

circuit = a, b, e, a
Example

\[
\text{circuit} = a, b, e, a
\]

\[
\text{subcircuit} = a, c, f, a
\]
Example

\[\text{circuit} = a, b, e, a \]

\[\text{subcircuit} = a, c, f, a \]
Example

\[
\text{circuit} = a, b, e, a, c, f, a
\]

\[H\]
Example

\[\text{circuit} = a, b, e, a, c, f, a \]

\[H \]

\[\text{subcircuit} = c, d, e, f, b, c \]
Example

\[\text{circuit} = a, b, e, a, c, f, a \]
\[\text{subcircuit} = c, d, e, f, b, c \]
Example

\[
\text{circuit} = a, b, e, a, c, d, e, f, b, c, f, a
\]
Constructing Euler Circuits

Fleury's Algorithm:
- Input: $G = (V, E)$, a connected multigraph, $2|\deg(x), \forall x \in V$
- Output: a Euler circuit
 - `circuit := ∅`
 - pick $v \in V$, find an edge $\{v, w\}$ which is not a cut edge
 - `circuit := circuit + {v, w}; H := G - {v, w} - isolated vertices`
 - while H has edges do
 - $v := w$;
 - find an edge vw which is not a cut edge
 - if there are only cut edges, choose one
 - `circuit := circuit + {v, w}; H := H - {v, w} - isolated vertices`
 - return `circuit`
Example
Example

Complexity: $O(|E|)$
Euler Paths

Theorem: $G = (V, E)$: connected multigraph, $|V| \geq 2$.

- Then G has an Euler path (not Euler circuit) iff G has exactly 2 vertices of odd degree.
 - \Leftarrow: Let $x, y \in V$ be of odd degree. Let $H := G + \{x, y\}$.
 - Every vertex has even degree in H
 - H has a Euler circuit: $a \cdots x, y, \cdots a$
 - y, \cdots, a, \cdots, x is a Euler path in G
 - \Rightarrow: G has $k = 0, 2, 4, \ldots$ vertices of odd degree
 - $k = 0$: there is a Euler circuit
 - $k \geq 2$: suppose there is a Euler path (not circuit):
 - $\{x_0, x_1\}, \ldots, \{x_{n-1}, x_n\} (x_0 \neq x_n)$
 - The only possible vertices of odd degree are x_0, x_n
Constructing Euler Paths

Algorithm:

- **Input:** \(G = (V, E) \), a connected multigraph, \(x, y \) have odd degree
- **Output:** an Euler path
 - \(H := G + xy \)
 - find a Euler circuit using Hierholzer's or Fleury's algorithm
 - remove the edge \(xy \) from the circuit \(\Rightarrow \) an Euler path
Hamilton Paths and Circuits

Definition: Let $G = (V, E)$ be a graph.

- A simple path $x_0, x_1, ..., x_n$ is a **Hamilton path** if $V = \{x_0, x_1, ..., x_n\}$ and $x_i \neq x_j$ for $0 \leq i < j \leq n$.

- A simple circuit $x_0, x_1, ..., x_n, x_0$ is a **Hamilton circuit** if $x_0, x_1, ..., x_n$ is a Hamilton path.
Sufficient Conditions

Ore’s Theorem: Let $G = (V, E)$ be a simple graph

- "$|V| = n \geq 3$ and $\text{deg}(u) + \text{deg}(v) \geq n$ whenever $\{u, v\} \notin E$" $\Rightarrow G$ has a Hamilton circuit.

Dirac’s Theorem: Let $G = (V, E)$ be a simple graph

- If $|V| = n \geq 3$ and $\text{deg}(u) \geq n/2$ for every $u \in V$, then G has a Hamilton circuit.
Ore’s Theorem

Ore’s Theorem: Let $G = (V, E)$ be a simple graph

• $|V| = n \geq 3$ and $\text{deg}(u) + \text{deg}(v) \geq n$ whenever $\{u, v\} \notin E$ \ \Rightarrow \ G$ has a Hamilton circuit.

• Operations on G:
 • $H := G$;
 • while H does not contain a Hamilton circuit do
 • $G' = H$;
 • pick $u, v \in V$ s.t. $\{u, v\}$ is not an edge of G'
 • $H := G' + \{u, v\}$;
 • $x := u; y := v$;
 • Let $x = u_1, u_2, \ldots, u_{n-1}, y = u_n$ be a Hamilton circuit in H.
Ore’s Theorem

Let $A := \{i: 2 \leq i \leq n, \{x, u_i\} \in E\}$

Let $B := \{i: 2 \leq i \leq n, \{y, u_{i-1}\} \in E\}$

$\{x, y\} \notin E \Rightarrow |A| + |B| \geq n \Rightarrow \exists i \in \{2, ..., n\}$ s. t. $i \in A \cap B$

- $\{x, u_i\} \in E$ and $\{y, u_{i-1}\} \in E$

- $x = u_1, u_2, ..., u_{n-1}, y = u_n$ is a Hamilton circuit in H
 - $x = u_1, ..., u_{i-1}, y = u_n, u_{n-1}, ..., u_i, x = u_1$ is a Hamilton circuit in G'
 - G' does not have Hamilton circuit $\rightarrow \leftarrow$
Application

Travel Salesperson Problem:

• There is a list of cities
• The distances between each pair of cities are given
• Find a route that *visits each city exactly once* and *returns to the origin city* such that the *total distance is minimum*.
 • *NP-hard* in combinatorial optimization
 • operations research; theoretical computer science

\[\text{ABCDA} \]