
A Semantic Search Approach by Graph
Matching with Negations and Inferences

Kewei Tu, Jing Lu, Haiping Zhu, Guowei Liu, and Yong Yu

Department of Computer Science and Engineering,
Shanghai JiaoTong University, Shanghai, 200030, P.R.China

tukw@sjtu.edu.cn, robert lu@263.net, hpzhu@sjtu.edu.cn,

liugw2000@163.net, yyu@mail.sjtu.edu.cn

Abstract. Research on semantic search has become heated these years.
In this paper we propose an approach focusing on searching for resources
with descriptions. The knowledge representation we employ is based on
conceptual graphs and is expressive with negation. We carry out semantic
search by graph matching, which can be performed in polynomial time.
Before matching we enrich the resource graphs with background knowl-
edge by a deductive graph inference, so as to improve the search perfor-
mance. The processing of negations and the graph inference method are
two important contributions of this paper.

1 Introduction

Today more and more information has been provided in the Internet. One could
find almost anything he is interested in. However, more and more time has to
be spent in filtering irrelevant information when searching for that something.
Complex searching techniques have been employed in today’s keyword based
search engines. With the goal of further improving search accuracy and efficiency,
semantic search based on structured data representation has been intensively
studied these years. Many semantic search techniques have been proposed, and
some search engines have been developed, including OntoSeek[1], WebKB-2[2],
etc.

We have also been devoted to this research area for years, focusing on search-
ing for resources identified by descriptions. The resource or query description is
often ad hoc, that is, there are often various descriptions for the same object.
And in many cases the description is complicated. So precise search may not
perform well. In our approach, we use a restricted but still expressive concep-
tual graph notation to represent the descriptions and carry out semantic search
by graph matching. And before matching we enrich the resource graphs with
background knowledge by deductive inference, so as to improve the search per-
formance. We have made a primary study on semantic matching in the past.
[3] introduced the matching method whose representation is non-nested with
no negation. Although we now choose the clothing domain to demonstrate our
approach, the method itself is domain independent and can be applied to other
domains.



The rest of this paper is organized as follows. Sect.2 overviews our whole
architecture for semantic search. Sect.3 describes the representation we employ.
Sect.4 presents our knowledge enrichment by inference. Sect.5 introduces in de-
tail the semantic matching. Sect.6 compares our work with related work. Sect.7
makes a conclusion in the end.

2 Overview of the Approach

The whole architecture of our approach is shown in Fig.1. Before performing the
semantic search, we gather domain resources from the web. Then the descriptions
of the resources will be extracted and converted to our representation based on
conceptual graphs (using the resource converter in Fig.1). Method to convert var-
ious kinds of resources depends on the original representation of the resources. In
our previous work, we have developed a system converting resources described
in natural language to conceptual graphs by a machine learning approach[4].
With some improvements it can be used here as a kind of converter. After the
conversion, the resource graphs will be stored into our resource repository. When
the enquiry is entered, it will also be translated into our representation by con-
verters. We use the ‘entry’ concept of graph, which is introduced in Sect.3, to
organize and manage the resource repository and to pilot the query process.

From the view of the query handler module, the input consists of the query
graph and the candidate graphs fetched from the resource repository according
to the entry of the query graph, and the output is the consensus ranking of the

User Interface Crawler 

Resource 

Converter

Query 

Converter 

Resource 

Repository

User 
Web 

Documents 

Matching 

Module 

Enrichment 

Module 

Query Handler 

Background 

Knowledge

Domain 

Ontology 

Query Result

Fig. 1. Overview of the approach



candidates. The ordered answers out of these candidates will be returned to the
user.

The query handler module contains two parts: enrichment module and match-
ing module. When a query begins, first the enrichment module will work on the
candidate resource graphs by means of inference, so as to gain more information
and make the matching module perform better. A background knowledge base
will provide the rules needed by the inference. Then the enriched resource graph
and the query graph will be matched in the matching module, supported by
domain ontology. We now use WordNet[5] as the ontology. In the future we may
use more specialized domain ontology instead of it.

The details will be introduced in the following sections, including our repre-
sentation, the enrichment module and the matching module.

3 Representation

In our approach, we adopt a subset of the classical conceptual graph notation[12].
The subset still holds enough ability to represent negative descriptions as well
as assertions.

As presented in [6, 12], the conjunction of two graphs is represented simply
by drawing both of them on the same sheet of paper; negation is represented
by a negative proposition concept partitioning the negative proposition from
the outer context. Since all Boolean operators can be reduced to negation and
conjunction, they can be represented in terms of nested negative contexts. And
with coreference link, universal quantifier can be represented.

To support conceptual graph matching in our approach, we made the follow-
ing restrictions on conceptual graph representation:

– As each graph represents a resource object in our approach, we request that
every graph has an entry concept, which is the center of the graph designating
the represented object and serves as the start position in matching the graph.
(See [3] for detailed discussion on the definition and feasibility of entry)
The entry of a graph must be in the outermost context, i.e. it can’t be
in any negative context. Every concept node in the graph should be able
to be accessed from the entry through directed relations and undirected
coreference links. We mark the entry of a graph when the graph is generated
from the description.

– Only coreference links can cross context boundaries, while arcs of relations
can’t, as demanded in the classical conceptual graph notation. Our restric-
tion is for every context boundary there must be one and only one corefer-
ence link that crosses it. This restriction actually guarantees every negative
context links to an outer context while avoids some intractable but rare situ-
ations such as graphs with coreference link cycles across context boundaries.

These restrictions seem reasonable, as each graph is to describe one object.
In our practice, most descriptions can be represented in this way. So we believe
our representation is expressive enough for semantic search.

Fig.2 is an example of the representation in our approach.



¬
T-shirt colr red

garment mtrl cotton

Fig. 2. Conceptual graph for “a cotton garment that is not a red T-shirt” (The grey
node marks the entry of the graph)

4 Knowledge Enrichment by Inference

In this section, we will introduce the knowledge enrichment phase of our ap-
proach. The enrichment is implemented by inference. We will first explain why
this phase is needed for semantic search. Then our deductive inference mecha-
nism is formally presented and the enrichment procedure is shown.

4.1 Reasons for the Enrichment

The purpose of knowledge enrichment is to add to the resource conceptual graphs
some information that is implicitly contained, so as to make more precise the
semantic matching introduced in Sect.5. Properly speaking, there are two main
reasons for the enrichment. One is the non-isomorphism phenomenon. The other
is inferring new knowledge by using world knowledge.

Non-isomorphism means that one meaning has more than one representation.
It is very common in practice. We often have many ways to express the same idea
in natural language. When we represent knowledge formally, non-isomorphism
still remains. We conclude several familiar kinds of non-isomorphism here:

– POS. There are lots of interchangeable uses of different POS forms belonging
to one same word. For example, “3 button” and “3 buttoned”, “A-line” and
“A-lined”, etc. In conceptual graph they are interpreted to different concepts
with corresponding different relations.

– Negation. The meaning of negation can be either implicitly held within one
single word or explicitly described using the negative word “not”. Take the
following as examples: “unlined” and “not lined”, “short” and “not long”,
etc. They are certainly represented differently.

– Converse Relations. Expressions appear different when using converse
relations. Say, “pocket 1 is to the left of pocket 2” and “pocket 2 is to the
right of pocket 1” are differently expressed, but the converse relation pair
leads to their same sense.

– Definition. A concept in a graph can be substituted by its definition graph
without changing the meaning.

The second reason for the enrichment is to infer new knowledge. With world
knowledge we can often gain new information from known descriptions. For



example, if we know a garment is “stone washed” then it is “prelaundered”. New
relations can also be introduced. Suppose we get the information that “shirt”
is made of “denim” and “denim” is made from “cotton”, then we will most
probably deduce that this “shirt” is made from “cotton”.

4.2 The Deductive Inference

First we define the graph rules, which represent the background knowledge.

Definition 1. A rule R is a graph: G1 → G2, where G1 and G2 are two con-
ceptual graphs with coreference link(s) between them. The two concepts linked
by a coreference link must be of the same type and must occur in the outermost
context. We can replace the coreference link by adding two identical variables as
the referents of the two linked concepts. We call G1 and G2 the hypothesis and
conclusion of the rule respectively.

The following two graphs are rules representing two examples mentioned in
Sect.4.1 (‘styl’ is the abbr. for ‘style’, ‘matr’ for ‘matter’, and ‘mtrl’ for ‘mater-
ial’):

Garment: *x styl Unlined

Garment: *x styl Lined 
¬

Garment: *x

Garment: *x Textile Fiber: *ymatr mtrl

Garment: *x Fiber: *ymtrl

R1:

R2:

Notice that rules for non-isomorphism should use mutual implication con-
nector instead of implication connector, that is to say, if there is a rule R1 for
non-isomorphism: G1 → G2, there should be a rule R2 : G2 → G1.

What does a rule mean? We can represent a rule R in conceptual graph
informally with universal quantifier: ∀x1, x2, . . . , xn,¬ [G1¬ [G2]], where for every
i = 1, 2, . . . , n, there are two concepts in G1 and G2 respectively, with xi as the
referent and a coreference link between them.

Now we can define the rule of inference.

Definition 2. Rule of Inference. If there is a conceptual graph G and a rule
R : G1 → G2, and there is a mapping Π from G1 to G, then we can get a new



graph. This new graph G′ is derived from G and G2 by inserting G2 to the same
context as Π(G1) and merging each concept c2 of G2 with Π(c1). Here c1 and
c2 denote two concepts in G1 and G2 linked by a coreference link, and Π(G1)
and Π(c1) respectively denote the image of G1 and the image concept of c1 in
G. There are some restrictions on the mapping Π from G1 to G. If in G1 the
dominant concept of c is in an evenly enclosed context, then Π(c) in G must
be a specialization of c; otherwise if the dominant concept of c is in an oddly
enclosed context, then Π(c) must be a generalization of c.

Here is an example illustrating the application of this rule of inference. From
the ontology we know ‘shirt’ is a specialization of ‘garment’, ‘denim’ is a special-
ization of ‘textile’, and ‘cotton’ is a specialization of ‘fiber’. Therefore if there
are the rules R1 and R2 shown above and a conceptual graph G (Fig.3a), then
we can get a new conceptual graph G′(Fig.3b) by applying the rule of inference
twice.

shirt styl unlined

denim cotton matr mtrl

(a)

shirt styl unlined

denim cotton matr mtrl 

shirt styl lined ¬

mtrl 

(b)

Fig. 3. An example of inference

This rule of inference is sound, or truth-preserving, i.e., if the graph rule and
the resource graph are both true, then the result graph is also true. We now
give a brief proof by using the first-order inference rules of conceptual graphs
[6]. Remember that the rule R : G1 → G2 is universally quantified. By uni-
versal instantiation, we can link the universally quantified concepts in R to the
corresponding ones in G with coreference links. Because G1 is enclosed at depth



1 when represented in conceptual graph, by erasure rule and insertion rule G1

can be rewritten to Π(G1). By iteration rule we copy the new form of the rule
to the context of Π(G1) in G. Now we have [¬ [Π(G1)¬ [G2]] Π(G1)] in some
context C of G. Then by applying deiteration rule and double negation rule we
get [Π(G1) G2] in C. The coreference links are reserved in the above procedure.
So after applying coreference join rule we finally get G′ described in Definition
2. All the inference rules used above are sound, so our inference rule is sound
too.

On the other hand, this inference is obviously not complete. But the aim of
our inference is not to get everything that is true but to make the matching
more precise. In fact, we only make the inference for a few steps, as described
in the next section. So completeness is not necessary for our approach.

It should be noted that our inference might weaken the description of the
resource conceptual graph, instead of restricting it. The simplest case is that,
from the resource graph ¬G1 and a rule G1 → G2 with no universally quantified
variable, we can get a new graph ¬ [G1 G2], which is weaker in sense than the
resource conceptual graph and can be inferred directly from the resource graph
without knowing the background knowledge, i.e., the rule. To be more precise,
suppose G1 is the hypothesis of the rule and G is the resource graph, the result
conceptual graph may be weakened if Π(G1) is in an oddly enclosed context of
G, and it may be restricted if Π(G1) is in an evenly enclosed context. As shown
in the next section, this will affect our use of the deductive inference.

4.3 Knowledge Enrichment Procedure

In our approach, the function of knowledge enrichment is to add background
knowledge to the resource graphs. In terms of model theory, this procedure is to
restrict the resource representation so as to exclude those models violating the
background knowledge represented by the rules. The ideal restricted resource
graph is the direct conjunction of the origin graph and the rule, which unfor-
tunately does not meet our representation requirements presented in Sect.3 in
some conditions and therefore can’t be processed by our matching approach. So
we make a compromise between restriction and processability to use the deduc-
tive inference introduced in the last section. As we have seen, the resource graph
is restricted only if the projection of the rule hypothesis is in an evenly enclosed
context of the resource graph. Therefore only in that condition will we do the
inference. The entire procedure is described below:

All the rules are stored in a rule base. When a resource conceptual graph
needs to be enriched by inference, we will try every rule in the rule base to
see whether the hypothesis of the rule and the resource conceptual graph meet
the requirements of the inference rule and the forenamed constraint. If so, the
deductive approach introduced above will be carried out and new information
will be obtained. Before being added to the resource conceptual graph, the new
information must be checked so that it won’t be a copy of existing information
in the resource conceptual graph. We call the last step redundancy detecting.



Such a process will be performed iteratively until no new information could
be added or the limit of iteration times is reached. This limit is tunable according
to the time and storage limitation. It also prevents the iteration from endlessly
going on because of the inference loop, which is caused by such kind of rules
that after applying one or more of them serially we will get some non-redundant
information which happens to be the hypothesis of the first rule. Notice that
such loop can’t be prevented by the redundancy-detecting step because the new
information gained is actually new.

5 Graph Matching with Negations

This section will explain our matching approach on graphs with negations. We
have made a primary study on semantic matching in the past [3]. But with intro-
duction of negations, there are some critical changes in the matching approach.
Also there are some other improvements. We will first illustrate how to convert
graphs to trees before matching. Then the matching similarity is defined. At last
the algorithm is given and evaluated.

5.1 Conversion of the Graphs

Notice that in our approach every graph has an entry which marks the concept
described by the whole graph. The entry can’t be placed in any negated context
and can access every concept of the graph. So we can convert a graph to a tree
with the entry as the root. Then matching can be performed on trees instead of
graphs.

The conversion is performed by using the entry as the root of the tree and
then extending the tree in directed relations and undirected coreference links.
Fig.4 is a simple example illustrating the process.

First, notice that the node “button” is duplicated in the resulted tree. This
is because there are two possible paths from the entry to the node “button”. So
the result tree may have more nodes than the original graph. The same node
can’t be added twice to one path of the tree, so as to break the cycle in the
graph.

Second, in the result tree there are two types of links between the concept
nodes. One is relation links (solid arrows), which have the same meaning as in a
conceptual graph. The other (dashed arrows) is used to represent the coreference
links in the original graph. For each group of coreferenced nodes in the graph,
there will be a “dummy” node in the result tree, and these nodes will be linked to
that dummy node with dashed arrows. This dummy node can be viewed as the
individual thing all these coreferenced concept nodes represent. Actually each
concept node in the graph without coreference link can also be converted in the
tree a concept node with its dummy node linked to it.

Third, the negation symbol on the context “T-shirt colored red” in the orig-
inal graph is converted to the negation symbol on the node “T-shirt” only. But
in fact the negation symbol in the tree means not the negation on the concept



garment part pocket part button 

part

T-shirt colr red
¬

(a)

garment part pocket part button 

part

T-shirt colr red

button dummy 

¬

(b) 

Fig. 4. An example of converting a graph (a) into a tree (b) (The grey node of graph
(a) marks the entry. ‘colr’ is the abbr. for ‘color’.)

node “T-shirt”, but the negation on the whole subtree rooted on that node. As
in Sect.3 we have made restrictions on negations and coreference links in our
graphs, this conversion is always sound.

5.2 Similarity Definition

Now we can define the similarity between the query graph and the resource
graph. The similarity between graphs is based on the similarity between concepts
and relations, which is mainly supported by the domain ontology. As the concept
and relation similarity definition used here is the same as in our previous work
[3], here we will only focus on the similarity definition between graphs.

In the following discussion, we will use the function SIMC(CQ, CR) to rep-
resent the similarity between two concepts, the function SIMR(RQ, RR) to rep-
resent the similarity between two relations, and the function SIMT (TQ, TR) to
represent the similarity between two subtrees. The subscript Q or R declares the
item is from the query or resource graph respectively. The order of parameters in
these functions could not be changed, that is, the first parameter must be query
item and the second must be resource item. This is because the similarity defined
here is not purely tree similarity but the extent to which the resource satisfies
the query. The function W (TQ) represents the weight value of the subtree in the
query tree and will be defined later. It represents the importance of the subtree.

The similarity between the query and resource trees or subtrees could be
recursively defined as follows, with SIMC and SIMR defined in [3]:



Definition 3. SIMT (TQ, TR) =

dummyCdummyC

TWP

CCSIMTWRRSIMTTSIMMaxP

dummyCdummyC
CNum

TTSIM

dummyC

TW

TWTTSIM

RQCNum

i

i

Q

RQC

CNum

i

i

Q

iA

R

i

QR

iA

R

i

QT
iA

RQ

R

CNum

i

i

RQT

QCNum

i

i

Q

CNum

i

i

QR

i

QT

Q

Q

R

Q

Q

,

1

,,,

,

,

,

1

1

1

1

1

In the definition, T with subscript represents a tree or subtree, and C with the
same subscript represents the root node of T . T i represents the subtree rooted
on the i-th child node of the root of T , and Ri represents the i-th relation of the
root of T . Num(C) represents the number of child nodes of the root node C.
A(i) is an injection from the subtree labels of the query tree to the subtree labels
of the resource tree. If the subtree T i in the query tree can’t find a corresponding
subtree in the resource tree, then A(i) is assigned a special value so that the SIM
function with TA(i) or RA(i) as the parameter will return 0. P is a discount factor
between 0 and 1. The function W (TQ) represents the weight value of the subtree
in the query tree and will be defined later. It represents the importance of the
subtree.

The first two formulas in the definition describe how to calculate the similar-
ity while there’s dummy node. If the dummy node is the root of the query tree,
then the similarity is the weighted average of the similarities of its subtrees with
the resource tree. If the dummy node is the root of the resource tree, as there
is no weight definition for the resource tree, the result equals to the average of
similarities of its subtrees with the query tree. The third formula calculates the
similarity between two normal nodes. The main calculation is to find the best
possible matching between the query subtrees and the resource subtrees by the
Max function. The result similarity is the weighted average of the similarities of
subtrees and that of the roots.

In the formula, P is a constant between 0 and 1, which determines how fast
the weight of nodes decreases with the depth of the tree. If P = 1, all nodes
in the query are as important as each other. On the contrary, if P = 0, only
the entry of the query is considered useful. In our approach, we use P = 0.5 by
default.

W (TQ) represents the importance to the user of the description that is rep-
resented by the subtree TQ. If the user describes one of the attributes at length,
then that attribute is likely of more importance. So we should add more weight
to the subtrees that have more nodes than others. Therefore W (TQ) is defined
as the following:



W (TQ) =





∑Num(CQ)
i=1 W

(
T i

Q

)
(CQ = dummy)

P
(∑Num(CQ)

i=1 W
(
T i

Q

))
+ 1 (CQ 6= dummy)

Users can also modify this function by pointing out the important attributes.
How to calculate the similarity when negations are concerned? Actually, if

exactly one of the TQ and TR has a negation symbol on the root, the result
similarity will be one minus the original similarity of the two trees.

Here is an example showing how the similarity is calculated.

T-shirt 

colr

red

dummy

¬

part pocket 

color

(a) The query tree: a T-shirt which has a pocket and is not red 

shirt part pocket part button 

part

colr blue 

button 

(b) The resource tree: a blue shirt with a buttoned pocket 

Fig. 5. An example of mathcing

Before calculating the similarity, we should first calculate the default weight
of each subtree in the query tree. According to the formula above, the weights
of “color”, “blue” and “pocket” are 1, the weight of subtree rooted on “dummy”
is 2, and therefore the weight of the whole tree is 2.5.

To calculate the similarity between “T-shirt” and “shirt”, the algorithm will
first try to match their child nodes. In theory, six similarities (two children in
the query match three children in the resource) should be calculated. Because
similarity between different relations is zero, in fact only similarities between
“dummy” and “blue”, “pocket” and “pocket” and “pocket” and “button” are
calculated.

The similarity between “dummy” and “blue” is the weighted average of the
similarity between “color” and “blue” and the similarity between “not red” and



“blue”. “Blue” is a kind of “color” and “blue” is in the resource, so the sub-query
“color” is satisfied and the similarity is 1. Assume the similarity between “red”
and “blue” is 0.2, so the similarity between “not red” and “blue” is 0.8. We now
get the similarity between “dummy” and “blue” to be 0.9. On the other side,
the similarity between “pocket” and “pocket” equals to 1. As the matching is
based on the query, the “button” linked to “pocket” in the resource is ignored.
The similarity between “pocket” and “button” is small. So the best matching is
“blue” to “dummy” and “pocket” to “pocket”.

Finally, although “shirt” is the super type of “T-shirt”, it is in the resource.
So we assume the similarity between “T-shirt” and “shirt” is 0.7. By the formula
we get the final result 0.84.

5.3 Matching Algorithm and Its Evaluation

As described above, our matching method has two steps. The first is to convert
the query and resource graphs into trees. The algorithm is similar to depth-
first graph traversal. The second is to calculate the similarity of two trees. As
the similarity is recursively defined, we use recursion to carry out this step. In
matching every pair of nodes, the min cost max flow algorithm is used to get
the best match of their child nodes. The evaluation of the time complexity of
our algorithm is given below.

The first step is to convert a graph into a tree. In practice, the number of
nodes of the generated tree is just a little larger than that of the graph. So the
time complexity is linear in the size of the graph in most cases.

The second step is to match two trees. Assume the height of both trees is
no larger than h, and there are at most n nodes in one level of a tree. While
the min cost max flow algorithm is used for matching, the time complexity is
O

(
(a + b)3 min(a, b)

)
, where a and b denote the node number in the two groups

for matching. In each level of a tree, we can group the nodes by their parents.
Suppose in query tree the number of nodes in each group is a1, a2, . . . , aq respec-
tively, and in resource tree the number of nodes in each group is b1, b2, . . . , br

respectively. Then we can calculate the time complexity of the matching in each
level of the trees as the following:

T =
q∑

i=1

r∑

j=1

(
(ai + bj)

3 min (ai, bj)
)

=
q∑

i=1

r∑

j=1

((
a3

i + 3a2
i bj + 3aib

2
j + b3

j

)
min (ai, bj)

)

≤
q∑

i=1

r∑

j=1

((
a3

i + 3a2
i bj

)
bj +

(
3aib

2
j + b3

j

)
ai

)

=
q∑

i=1

r∑

j=1

(
a3

i bj + 6a2
i b

2
j + aib

3
j

)



<




q∑

i=1

ai +
r∑

j=1

bj




4

≤ (2n)4

So, the actual time complexity of the whole algorithm is O
(
n4h

)
. In practice,

most graphs have no more than a few tens of nodes, so we think this time
complexity is acceptable.

6 Related Work

Semantic search has been studied for years to improve both recall and precision of
information retrieval. Most projects emphasize on selecting from semantic data
source the information which perfectly fits the query. In contrast, we use a graph
matching approach to carry out imprecise semantic search. Some projects, such
as OntoSeek [1], also employ graph matching methods. Our difference from these
ones is discussed in the third paragraph. Another feature of our approach is the
use of inference to introduce the background knowledge. While many projects
have not employed inference, some ones just use limited inference to support
query broadening or relaxation, such as DAML Semantic Search Service [7].
OntoBroker [8], with SiLRI [9] as its inference engine, employs additional rules
expressed in F-logic to provide information about relationships between predi-
cates, therefore it has the capacity to get information by inference which is not
stated explicitly in the source structural data. Our approach also employs similar
additional rules. Where it differs from OntoBroker is that we query by means of
semantic matching. As a result, our approach has to adopt data-driven inference
(or forward inference) so that after inference our matching is meaningful.

Sound and complete conceptual graph inference has long been well-established
[6, 12]. But we only use a sound and non-complete inference in order to simplify
the implementation and make the approach more efficient. The forward chain-
ing inference discussed in [10] is similar to ours. It can be viewed as a simplified
version of our inference, for it only deals with simple conceptual graphs which
are non-nested with no negation. Therefore its inference is complete. But the ex-
pressive power of simple conceptual graphs is too limited, so while reserving the
simplicity of the inference, we sacrifice the completeness, which is not important
to our method.

Some previoufs work has studied the issue of semantic matching. OntoSeek
[1] fetches corresponding nodes first and then checks the arc linkage between
them, so as to avoid NP-completeness of such a computation known as Max-
imum Subgraph Matching. We think such simplification separate matching on
nodes from the organization of the graph. So we try to retain graph structure in
our similarity definition but confine comparison range to mitigate the computa-
tion. Cupid [11] matches on bottom-up traversal and biases matches of schema
leaves to perform schema mapping. We share the idea of bottom-up traversal
with Cupid, but we prefer matches of the entry. Moreover, like most semantic



matching researches, neither of the above projects has the ability to represent
and match negation, which is an important feature of our approach.

7 Conclusion and Future Work

In this paper we introduced a semantic search approach by graph matching. Our
knowledge representation is based on conceptual graphs with some restrictions,
while it is still expressive for semantic search. Before matching we enrich the re-
source graphs with linguistic and world knowledge by a means based on a formal
deductive inference. The semantic matching method calculates the similarity be-
tween the query graph and the resource graph in polynomial time. At last the
candidate resource graphs are ranked and the best corresponding answers are
output. A prototype of our approach is currently under development.

There is still a lot of possible work that remains to be done. Various methods
to convert resource and query to our representation could be developed. The rule
base used in inference could be automatically built by means of DM methods.
Confidence of rules could be introduced to the inference approach. Matching of
different levels of the tree structure is also an interesting idea.

References

1. N. Guarino, C. Masolo, and G. Vetere: OntoSeek: Content-Based Access to the
Web. IEEE Intelligent Systems, 14(3), pp.70–80.

2. P. A. Martin: General documentation of WebKB-2. Available at
http://kvo.itee.uq.edu.au/webkb/WebKB2/doc/generalDoc.html

3. Jiwei Zhong, Haiping Zhu, Jianming Li and Yong Yu: Conceptual Graph Matching
for Semantic Search. In Proc. of the 10th Intl. Conf. on Conceptual Structures,
(ICCS2002), LNAI 2393, Springer-Verlag, 2002.

4. Lei Zhang and Yong Yu: Learning to Generate CGs from Domain Specific Sen-
tences. In Proc. of the 9th Intl. Conf. on Conceptual Structures, (ICCS2001),
LNAI 2120, Springer-Verlag, 2001.

5. George A. Miller: WordNet: An On-line Lexical Database. In the Intl. Journal of
Lexicography, Vol.3, No.4, 1990.

6. J. F. Sowa: Conceptual Structures: Information Processing in Mind and Machine.
Addison-Wesley. 1984.

7. DAML Semantic Search Service, http://reliant.teknowledge.com/DAML/
8. OntoBroker, http://ontobroker.aifb.uni-karlsruhe.de/index ob.html
9. S. Decker, D. Brickley, J. Saarela, and J. Angele: A Query and Inference Service

for RDF. In: QL’98 - The Query Languages Workshop. 1998.
10. E. Salvat and M.L. Mugnier: Sound and complete forward and backward chainings

of graph rules. In Proc. of the 4th Intl. Conf. on Conceptual Structures, ICCS’96,
LNAI 1115, Springer-Verlag, 1996.

11. J. Madhavan, P.A. Bernstein, and E. Rahm: Generic Schema Matching with Cupid.
In Proc. of the 27th Intl. Conf. on Very Large Databases (VLDB 2001).

12. J. F. Sowa (ed.): Conceptual Graph Standard. Available at
http://www.jfsowa.com/cg/cgstand.htm


