
CMC: Combining Multiple Schema-Matching

Strategies based on Credibility Prediction

KeWei Tu and Yong Yu

Department of Computer Science and Engineering,
Shanghai JiaoTong University, Shanghai, 200030, P.R.China

{tukw,yyu}@sjtu.edu.cn

Abstract. Schema matching, which tries to find semantic correspon-
dences between schema elements, is a key operation in data engineering.
Combining multiple matching strategies is a very promising technique
for schema matching. To overcome the limitations of existing combina-
tion systems and to achieve better performances, in this paper the CMC
system is proposed, which combines multiple matchers based on credi-
bility prediction. We first predict the accuracy of each matcher on the
current matching task, and accordingly calculate each matcher’s cred-
ibility. These credibilities are then used as weights in aggregating the
matching results of different matchers into a combined one. The cred-
ibility prediction procedure is introduced at length, and two strategies
(i.e. manual rule and machine learning) are presented. Our experiments
on real world schemas validate the merits of our system.

1 Introduction

There are often multiple data sources in the same or overlapping domains.
These data sources are designed and evolved independently, thus having different
schemas. When data sharing is required, schema matching has to be performed
to overcome the heterogeneity problem. Given two schemas, schema matching
finds semantic correspondences between their elements. For example, “Address”

in one schema matches “Location” in the other schema because they convey the
same meaning.

With the increasing request of knowledge sharing, effective and efficient
schema matching is in great demand. Since manual construction of schema
matching is laborious and error-prone, numerous (semi-)automatic schema match-
ing approaches have been developed. Among them, some utilize the element
label, data type and structure information of schemas [1–3], some glean infor-
mation from instances [4–7], and others reuse previous matchings [8, 5, 9, 10].
It is being increasingly accepted that, to achieve better performance in schema
matching, one should make use of every possible kind of information about the
schemas to be matched. Therefore, it is preferred to combine multiple matching
strategies into a single system.

LSD [4] and COMA [8] are the two most well-known matcher combining sys-
tems. LSD is used in schema integration, i.e. finding mappings between various

local schemas to the same mediated schema. To combine individual matchers it
performs meta-learning with the stacking technique [11]. COMA employs quite
straightforward methods such as average and maximization for combination, so
that it could avoid the burden of learning. Apart from their merits, however,
both LSD and COMA suffer from some limitations:

– It could be quite difficult for LSD to collect training samples for meta-
learning in generic schema matching applications other than schema inte-
gration;

– The strategy employed in LSD would incur too much training in generic
schema matching applications other than schema integration;

– The meta-learning method of LSD is sensitive to base-matcher addition or
removal in that the meta-learner must be re-trained;

– The meta-learner of LSD does not take into account all the information
relevant to the matcher combination procedure;

– The straightforward combination methods of COMA are not sophisticated
enough to work well in some complex situations;

– To achieve better combination, the users of COMA have to perform manual
configuration, such as specifying the weights.

A more detailed analysis of the two systems and their limitations is presented
in Sect.2.

In order to overcome the limitations discussed above as well as to further
enhance the performance of matcher combining, in this paper we propose the
CMC (Credibility-based Matcher Combiner) system. The matcher combination
procedure of CMC is based on the observation that every base matcher has
quite different performance in different matching tasks. For example, a matcher
exploiting schema structure information would perform well for elements from
XML schemas with rich structures, but the same matcher would become unreli-
able when it comes to “flat” schemas. Therefore, CMC dynamically predicts the
accuracy of each matcher based on the characteristics of the current matching
task, and accordingly calculates the matcher’s credibility. Then, the results from
various base matchers are aggregated based on their credibilities. Specifically,
CMC has the following virtues:

– All the information relevant to the combination is taken into account in
CMC’s prediction of base matchers’ credibilities, leading to better matching
performances as illustrated in our experiments;

– Although one of the credibility-prediction strategies employs machine learn-
ing, training samples are easy to collect and the training cost is rather small.
Besides, no re-training is needed when adding or removing base-matchers;

– The combination procedure could be carried out in a fully automatic way.

The rest of the paper is organized as follows. The next section presents re-
lated work in schema matching and analyzes the limitations of previous matcher
combining systems. Sect.3 gives an overview of the CMC system. It is in Sect.4
that credibility prediction is introduced in detail. Experiment results are given
out in Sect.5. Finally we conclude this paper in Sect.6.

2 Related Work

So far, many schema matching techniques have been proposed, most of which
can be adapted as base matchers in matcher combining systems. [3] proposes a
matching algorithm called similarity flooding, which utilizes schema structure
information by means of fix-point computation. The Näıve-Bayes matcher in
LSD [4] learns from schema instances and makes prediction to match new ele-
ments. Automatch [5] constructs an attribute dictionary based on instances of
previously mapped schemas and uses the dictionary to match new schemas. A
similar approach is proposed in [9], with schema level information also exploited.
[6] presents a novel technique which performs matching utilizing the mutual in-
formation of elements derived from instance statistical information. As existing
mappings may also provide valuable information, [10] discusses how to compose
these mappings for new ones. A simplified technique is proposed in COMA [8].
Cupid [2] and DIKE [1] first calculate element similarities based on element
information (e.g. label, data type and constraint), then revises them based on
schema structural information.

Several matcher combining systems have been proposed before CMC. LSD
[4] and COMA [8] are two representative systems. LSD is the first system that
broaches the idea of combining multiple matching strategies. It is used in schema
integration, i.e. it aims to find out mappings between various local schemas to a
same mediated schema. All individual matchers in LSD adopt machine learning
techniques and are called base learners. For each pair of elements, each base
learner predicts a similarity, then a meta-learner is applied to aggregate all the
similarities by means of weighted average, where the weights are also obtained by
machine learning. LSD has an extension called GLUE [12], which gives flexible
similarity definition and a technique to take into account background knowledge.
Unlike LSD, COMA uses schema-level matchers without a learning process, and
it can employ hybrid matchers as its base matchers. The aggregation method
in COMA is quite straightforward, such as average and maximization, with all
possible parameters (e.g. weights) specified by users instead of by meta-learning.

Apart from their merits, LSD and COMA still suffer from some limitations.
For the LSD system,

– There is one meta-learner for each element of the mediated schema, thus
each element must have a training set. To include enough positive samples
in the training set, LSD collects equivalent elements from other schemas
through existing mappings. This is feasible in schema integration, since it is
reasonable that many schemas have previously been mapped to the medi-
ated schema. However, in other applications existing mappings to the target
schema may be scarce, making the training set too hard to construct.

– Meta-learners are associated with particular schemas. As LSD deals with
schema integration, i.e. all matching tasks aim at the same mediated schema,
such association is all right. But for other applications where matching is
performed on arbitrary two schemas, if the schemas are new to the sys-
tem, then a new set of meta-learners must be trained from scratch. This

is time-consuming, especially considering that the number of meta-learners
equals the number of schema elements. (However, it is possible to release
such association at the cost of performance, i.e. to use one meta-learner for
any schemas, as implemented in our comparison experiment introduced in
Sect.5.)

– Meta-learner is sensitive to adding/removing base learner(s) in that the
meta-learner must be re-trained. However, adding or removing base match-
ers may be necessary in many scenarios. For example, if two flat schemas
are to be matched, then no structural matchers should be employed; and
if the matching task has a time limit, then quick matchers like the label
matcher are preferred, while matchers with iteration or with training phase
are undesirable.

– The meta-learner used in LSD actually performs linear combination (i.e.
weighted sum) of the results from base learners. The weights are obtained
by training and kept unchanged thereafter. Hence, for each element of the
mediated schema, its meta-learner weighs each base learner in a fixed way,
regardless of what source element is being matched to this target element.
This, however, is improper under certain circumstances. For example, if a
schema with simple structure is being matched, then the weight of the struc-
tural matcher should become smaller. In other words, the weights should be
determined by both the target element and the source element. This prob-
lem could be alleviated if non-linear combination is used by the meta-learner,
such as the multi-layer perceptron, because in this way the base learners are
actually weighed differently according to their outputs, and these outputs
expose information of the source element to some extent. However, as these
outputs can’t fully represent the source element, the problem can’t be en-
tirely eliminated. Besides, using non-linear combination further adds to the
computational burden of training meta-learners.

For the COMA system,

– To avoid the burden of training meta-learners, COMA employs simple meth-
ods to aggregate the results of base matchers, such as average and maximiza-
tion. These methods, however, may be inadequate for complex situations,
because in fact each base matcher has very different performance in differ-
ent conditions (see results in [13]), and simple aggregation methods couldn’t
capture such performance variation.

– If better aggregation is needed, users of COMA have to manually choose and
configure the combination methods, such as specifying weights for matchers.

In this paper the CMC system is proposed to address these problems, as well
as to achieve better performance.

3 Overview of CMC

As a matcher combining system, CMC contains a set of base matchers. Most
of the schema-matching techniques developed so far can be employed as base
matchers. For example,

NameMatcher compares labels of schema elements to do matching.
DataTypeMatcher matches the data type of elements.
LeavesMatcher is a matcher similar to Cupid [2], which exploits the structure

information of the schemas with a bias on leaf nodes.
UserFeedback is a special matcher which allow users to manually modify the

results from automatic matchers.

As in LSD and COMA, all of these base matchers take two target schemas S1

and S2 as input, and output a similarity between 0 and 1 for each pairwise
combination of S1 elements and S2 elements, constituting a similarity matrix
of size m × n, where m and n are element numbers of S1 and S2 respectively.
Based on whether an initial similarity matrix is needed or not, base matchers
can be divided into two classes, as illustrated in Fig.1. For the above examples,
the former two belong to the first class and the latter two belong to the second.

(a) (b)

Fig. 1. Two classes of base matchers.

A key operation of CMC is the base-matcher combination process. Unlike
LSD and COMA, a credibility-based approach is employed in CMC for the
matcher combiner. The underlying rationale is that every base matcher per-
forms very differently in matching different kinds of schema element pair, so
the matcher combiner should take into account the anticipated performance of
each base matcher for the current matching task and accordingly assign different
credit on them. For instance, structure matchers are more credible if the schema
elements being matched are embedded in rich structures, and DataTypeMatcher

is more reliable when it says “unmatched” instead of “matched”. To achieve this
idea, in CMC each base matcher is attached with a credibility predictor, which
dynamically predicts the matcher’s credibility for each pair of elements being

matched. In this way the combiner receives two matrices from each base matcher
(i.e. the similarity matrix and the credibility matrix), then it aggregates all the
similarity matrices into one matrix by weighted average, where the weights are
determined by the credibility matrices. This procedure is illustrated in Fig.2.
Notice that a matcher combiner itself could serve as a base matcher for another
combiner.

With base matchers and combiners as modules, one could connect them
freely, according to the characteristic of each base matcher and the requirement
of the current task. On the other hand, CMC also provides a default connection
policy for those who are not willing to do customization, which is illustrated in

(a) The Architecture

Base Matcher 1 :

5.02.0
7.01

8.01.0
8.05.0

Base Matcher 2 :

4.00
16.0

8.01
6.08.0

Similarity
Matrix

Credibility
Matrix

75.0
8.05.0

8.06.05.01

45.0
8.08.0

8.04.08.05.0

45.002.0
83.075.0

Combined
Similarity

Matrix

83.0
6.08.0

6.018.07.0

02.0
11.0

101.02.0

Weighted Average
of Similarities

(b) Sample Procedure

Fig. 2. Matcher Combiner

Fig.3. There are two layers in this default structure. The bottom layer consists
of base matchers that do not require initial similarity, and a combiner aggregates
their outputs. Matchers that must be initialized constitute the upper layer, with
the combined similarity of the first layer serving as their initial similarity. Finally
a second combiner aggregates the results from the upper layer, as well as the
result of the first combiner, and output the final similarity matrix.

Fig. 3. The default structure.

To convert the final similarity matrix to the matching result, i.e. correspon-
dences between schema elements, CMC adopts the method introduced in COMA.
Specifically, for each element we select the element of the other schema with the
best similarity value exceeding a threshold. For details about this process please
refer to [8].

4 Credibility Prediction

In CMC, the credibility of a matcher indicates how much the combiner should
trust the matcher. As one can see from the previous section, credibility pre-
diction is a quite crucial operation for the CMC system. In this section, we will
present the two steps in predicting the credibility of a base matcher, i.e. accuracy

predicting and converting accuracy to credibility. One important feature of this
mechanism is that the prediction procedures of base matchers are independent
with each other, thus the predictor of one matcher will not be affected by the
addition, removal or relocation of other matchers.

4.1 Accuracy Predicting

As the first step of credibility prediction, we predict a matcher’s accuracy for

each inputted pair of schema elements.

For a specific matcher, its matching accuracy in a matching task is correlated
with several features of the task (here a matching task means the estimating of a
pair of schema elements’ similarity). For example, for some structure matchers,
the number of edges connected to the element to be matched can serve as a
feature, because with more edges there is usually more structural information
that can be utilized, leading to higher matching accuracy. With this knowledge,
we predict a matcher’s accuracy in the current matching task as the mean accu-

racy of the set of tasks bearing the same features as the current task. Given that
the output of a matcher is a numeric similarity, the mean accuracy is defined in
terms of the mean square error (MSE) of that set of tasks:

MSE = EF [(sim− simactual)
2]

F is that set of matching tasks bearing the same features as the current task,
and EF represents the mathematical expectation on the set F . simactual is 1 for
matched element pairs and 0 otherwise. Obviously the less MSE is, the higher
the accuracy is. Two strategies are presented here to estimate MSE for different
kinds of matchers.

Manual Rule. For some matchers, the MSE estimation is intuitive enough to
be formulated manually. For our sample matchers in Sect.3, this strategy could
be applied to DataTypeMatcher and UserFeedback.

For DataTypeMatcher, the outputted similarity is the only feature correlated
to the matching accuracy, and it indicates the probability that the data types of
the two elements are matched. If the data types are unmatched, then these two
elements can’t be matched at all. If the data types match, then the elements’
being matched or not could be equally possible. Therefore, MSE = (1− sim)×

(sim− 0)2 + sim×
(sim−1)2+(sim−0)2

2 = 1
2sim.

For UserFeedback, things become even simpler. For the similarities that are
confirmed or modified by the user, the highest confidence should be assigned,
so MSE → 0. For the others, we just keep their credibility unchanged and skip
this prediction procedure.

Notice that the matcher combiner of CMC could also be regarded as a base
matcher, so its accuracy must be calculated as well. With the formulas from
[14], we could formulate the MSE of a matcher combiner as follows, under the

assumption that base matchers are uncorrelated.

MSE =
∑

i,j

wiwjCij =
∑

i

w2
i Cii =

∑

i

w2
i MSEi

Here wi is the weight of the i-th matcher, and Cij is the correlation between
the i-th and the j-th matcher, which is zero under our assumption if i 6= j, and
equals MSEi otherwise.

Learning to Predict. For most schema matchers, it is difficult, if not impos-
sible, to manually formulate the MSE calculation. Examples include two of our
sample matchers, NameMatcher and LeavesMatcher. Therefore, we use machine-
learning techniques for the estimation, i.e. learning to predict MSE from the
features of the current matching task.

It is important to select appropriate features of matching tasks for each
matcher, and the feature set should include all the possible factors that may
affect the matching accuracy.

– For NameMatcher, longer labels often convey more information, so the label
lengths of the two elements to be matched are two features. Likewise, the
number of words in the label could also be regarded as a feature.

– For LeavesMatcher, the number of leaves of an element node would influ-
ence the effectiveness of this matcher, as well as the depth of that node.
Another important feature is the credibility of the initial similarity, which
will doubtless affect this matcher’s performance.

– The outputted similarity is also a useful feature for most matchers, because
matchers often have different reliability on different outputs.

With features selected, we train a learner which takes the values of the fea-
tures as the input and output the estimated MSE. Any existing schema match-
ings can be used to construct the training set.

A straightforward method to construct the training set is, for each existing
schema matching: (1) Run the base matcher on it to get a similarity matrix,
so that the squared error of each similarity can be computed. (2) Construct
a training sample for each pair of elements < e1, e2 > where e1 and e2 come
respectively from the two schemas of the existing matching; let the input of the
training sample be the feature values of < e1, e2 >, and the target output be the
squared error of their similarity outputted by the base matcher.

However, since in actual schema matching the matched element pairs are
far less than unmatched ones, the training set constructed in this way is highly
unbalanced, leading to a predictor with an overwhelming bias. To overcome this
problem, before training we duplicate those samples that are constructed by
matched element pairs, so as to make the numbers of the two kinds equivalent.

Notice that although machine learning is used here, for a particular matcher
once the predictor is trained, it could be applied for any matching task and no
retraining is mandatory. Moreover, while all kinds of supervised learning methods
can be used here, the online learning techniques [15] are preferred as the learner

could improve itself in operation, thus further eliminating the worry of having
insufficient existing schema matchings for training.

4.2 From Accuracy to Credibility

With accuracy (i.e. MSE) estimated, the credibility of each outputted similarity
can be calculated as follows:

cred = e−C×MSE

Here C is a non-negative constant, determining how fast the credibility falls
with the increase of MSE. When C is positive, higher credibility is assigned
to matchers with higher accuracy (i.e. with lower MSE); but if C is zero, the
system simply averages the results from matchers, as in COMA. The empirical
value of C is 1.0.

5 Evaluation

We evaluated CMC on several real world schemas, i.e. five XML schemas for
purchase orders, which were first used in [8]. These schemas have 55 elements
on average, and their XML-tree depths are at least 4. The matches between
them have been manually established, which serve as either the benchmark or
the training set.

Four measures are adopted to evaluate matching results. Among them, pre-

cision and recall are highly coupled measures that are widely used. Overall has
been used in several schema matching literatures like [3, 8], taking into account
the manual effort needed to complete the matching task after automatic match-
ing. F-measure is the harmonic mean of precision and recall and has been used
in [5].

The CMC system used in the experiments consists of four base matchers, i.e.
NameMatcher, DataTypeMatcher, PathNameMatcher and LeavesMatcher. Path-

NameMatcher compares the names of the paths from the XML root to the
elements being matched. The other three matchers are introduced in Sect.3.
UserFeedBack is not employed so as to exclude subjective factors. The default
structure of CMC is used, i.e. the former three matchers are in the bottom layer
and the last one is in the upper layer. The machine learning technique used in
credibility prediction is the multilayer perceptron [15].

For comparison, another two combination methods are also tested. The first
one, the average-combination method, simply averages the results from base
matchers. This is also the default combination method of COMA. The second
uses the meta learning method of LSD, i.e. stacking [11], for combination. As
discussed in Sect.2, the meta learner in LSD is not applicable for generic schema
matching, so we make a slight modification on it, i.e. training one meta-learner
for all elements, instead of training multiple ones for different elements in the
mediate schema. Notice that when testing these two methods, only the combiners

in the system are substituted while the base matchers and their connection
remain unchanged. In addition, all the three methods employ the same converter,
which is discussed in Sect.3, to convert the similarity matrix to matches. For each
method the converter’s parameters are tuned to achieve the best performance,
and it happens that the three sets of parameters are the same, i.e. threshold =
0.5 and delta = 0.02, as in the COMA system.

It is worth mentioning that our experiments were designed to compare dif-
ferent combination strategies, instead of measuring the absolute matching per-
formance. Therefore some powerful but very complicated techniques were not
used, and the system configuration was not specially optimized for the matching
tasks in hand.

5.1 Single Matcher vs. Combination

We first compared the performance of base matchers against the combination
methods. The test was made on the first four of the ten matches between the
five testing schemas, with the rest of the matches constituting the training set
for both CMC and the meta-learning method.

DataType Name PathName Leaves Ave−Com Meta−Learning CMC

−0.2

0

0.2

0.4

0.6

0.8
Precision
Recall
Overall
F−measure

−33

Fig. 4. The performance of single base matchers and combination methods.

The advantage of combination methods can be easily seen in Fig.4. The
integrated measures (i.e. Overall and F-measure) are all improved significantly
by combination. LeavesMatcher performs significantly better than the other three
base matchers, but this is also the contribution of combination: LeavesMatcher

takes as the initial similarity the combined results of the other three matchers.

5.2 Comparing Combination Methods

To compare the performance of the three combination methods, we made a com-
prehensive test on all the ten matches between the five testing schemas. Con-
sidering that machine learning is used in CMC and the meta-learning method,
we adopted a cross-validation strategy [15]. The ten matches were divided into
five groups, and each time two successive groups were used for testing and the
rest were used for training. Thus the testing was conducted for five times alto-
gether. Comparisons between CMC and the other two methods are respectively

illustrated in Fig.5 and Fig.6, where the data is computed by subtracting the
results of the contrast method from the results of CMC.

1−4 3−6 5−8 7−10 9−2 Average
−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1
∆Precision
∆Recall
∆Overall
∆F−measure

Fig. 5. Average-Combination vs. CMC

1−4 3−6 5−8 7−10 9−2 Average
−0.04

−0.02

0

0.02

0.04

0.06
∆Precision
∆Recall
∆Overall
∆F−measure

Fig. 6. Meta-Learning vs. CMC

On average the two integrated measures (i.e. Overall and F-measure) are
increased by CMC in both comparisons. For individual tests, the Overall of
CMC is only reduced in two out of the ten comparison tests, while is increased
in all the others with the highest increase near 0.1, which means nearly 10% more
manual effort is saved; the F-measure of CMC is increased in nine out of the ten
comparison tests and only decreases very slightly in the fifth test compared to
the average method.

It is interesting to see that, CMC outperforms the average method by higher
precision while outperforms the meta-learning method mainly by higher recall.
We suppose this somewhat exposes the characteristic of the three methods, and
obviously CMC has a more balanced performance on precision and recall.

From the two figures one can also find that the meta-learning combination
method is better than the average method in the overall performance. This is not
surprising as meta-learning is much more complicated than the average method.

6 Conclusion and Future Work

Matcher combination is a promising technique for schema matching. Against
the limitations of existing combination systems, in this paper we propose the
CMC system, which combines multiple matchers based on credibility prediction.
For an individual matcher, its accuracy on each input is dynamically predicted,

by either manual rule or automatic learner. Based on the predicted accuracy,
its credibility is calculated. Then a combiner aggregates results from its base
matchers by weighted average, with each matcher’s weight specified by its current
credibility. Our experiments demonstrate the advantage of this approach.

The following is a list reviewing how the limitations of previous systems
discussed in Sect.1 and Sect.2 are overcome by CMC.

– When machine learning may be used in accuracy prediction, arbitrary exist-
ing matches can be used for training, and online learning is also applicable,
so collecting training set will not be a problem. Once trained, the predictor
can work for arbitrary matching task and no retraining is obligatory, so the
time for training is neglectable. Actually, as training can be accomplished
by developers, the end users may even be unaware of it.

– The credibility prediction for each base matcher is independent, so adding
or removing matchers won’t affect the combination.

– Our combination method could take into account any available information
of the current matching, which is specified as input features of credibility
prediction.

– The combination procedure is fully automatic unless the users do not want
to use the default connection policy of base matchers.

In future work, we plan to add more powerful base matchers to CMC for
better performance. Furthermore, it would be interesting to study other appli-
cations of credibility prediction, such as for base-matcher selection.

References

1. Palopoli, L., Saccà, D., Terracina, G., Ursino, D.: Uniform techniques for deriving
similarities of objects and subschemes in heterogeneous databases. IEEE Transac-
tions on Knowledge and Data Engineering 15 (2003) 271–294

2. Madhavan, J., Bernstein, P.A., Rahm, E.: Generic schema matching with cupid.
In Apers, P.M.G., Atzeni, P., Ceri, S., Paraboschi, S., Ramamohanarao, K., Snod-
grass, R.T., eds.: Proceedings of the Twenty-seventh International Conference on
Very Large Data Bases: Roma, Italy, 11–14th September, 2001, Los Altos, CA
94022, USA, Morgan Kaufmann Publishers (2001) 49–58

3. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity Flooding: A Versatile Graph
Matching Algorithm and ist Application to Schema Matching. In: Proc. 18th
ICDE, San Jose, CA (2002)

4. Doan, A., Domingos, P., Halevy, A.Y.: Reconciling schemas of disparate data
sources: a machine-learning approach. SIGMOD Record (ACM Special Interest
Group on Management of Data) 30 (2001) 509–520

5. Berlin, J., Motro, A.: Database schema matching using machine learning with
feature selection. In: Proceedings of the 14th International Conference on Advanced
Information Systems Engineering (CAiSE). (2002)

6. Kang, J., Naughton, J.F.: On schema matching with opaque column names and
data values. In: Proceedings of the 2003 ACM SIGMOD International Conference
on Management of Data 2003, San Diego, California, June 09–12, 2003, New York,
NY 10036, USA, ACM Press (2003) 205–216

7. Guo, M., Yu, Y.: Mutual enhancement of schema mapping and data mapping.
In: ACM SIGKDD 2004 Workshop on Mining For and From the Semantic Web.
(2004)

8. Do, H.H., Rahm, E.: COMA — A system for flexible combination of schema
matching approaches. In: VLDB 2002: proceedings of the Twenty-Eighth Interna-
tional Conference on Very Large Data Bases, Morgan Kaufmann Publishers (2002)
610–621

9. Madhavan, J., Bernstein, P., Chen, K., Halevy, A., Shenoy, P.P.: Corpus-based
schema matching. In: Information Integration on the Web Workshop at IJCAI03.
(2003)

10. Madhavan, J., Halevy, A.Y.: Composing mappings among data sources. In Freytag,
J.C., Lockemann, P.C., Abiteboul, S., Carey, M.J., Selinger, P.G., Heuer, A., eds.:
VLDB 2003: Proceedings of 29th International Conference on Very Large Data
Bases, September 9–12, 2003, Berlin, Germany, Los Altos, CA 94022, USA, Morgan
Kaufmann Publishers (2003) 572–583

11. Wolpert, D.H.: Stacked generalization. Neural Networks 5 (1992) 241–259
12. Doan, A., Madhavan, J., Domingos, P., Halevy, A.: Learning to Map between On-

tologies on the Semantic Web. In: Proceedings of the World-Wide Web Conference
(WWW-2002), ACM Press (2002)

13. Yatskevich, M.: Preliminary evaluation of schema matching systems. Technical Re-
port # DIT-03-028, Department of Information and Communication Technology,
University Of Trento (Italy) (2003)

14. Perrone, M.P., Cooper, L.N.: When networks disagree: Ensemble method for neu-
ral networks. In Mammone, R.J., ed.: Neural Networks for Speech and Image
processing, Chapman-Hall (1993)

15. Mitchell, T.M.: Machine Learning. McGraw-Hill (1997)

