Curriculum Learning of Bayesian Network Structures

Yanpeng Zhao¹, Yetian Chen², Kewei Tu¹ and Jin Tian²

¹School of Information Science and Technology, ShanghaiTech University, Shanghai, China ²Department of Computer Science, Iowa State University, Ames, IA, USA

Introduction

- Bayesian Network (BN)
- A directed acyclic graph (DAG) where nodes are random variables and directed edges represent probability dependencies among variables
- BN Structure Learning
- Firstly construct the topology (structure) of the network
- Then estimate the parameters (CPDs) given the fixed structure
- Curriculum Learning (CL) [Yoshua Bengio et al. ICML 2009]
- ▷ Ideas: learn with the simpler samples or easier tasks as the start
- ▷ **Definition:** a curriculum is a sequence of weighting schemes of the training data $\langle W_1, W_2, \ldots, W_n \rangle$, where W_1 assigns more weight to easier samples, then each next scheme assigns more weight to harder samples, at last W_n assigns uniform weight to all samples

Scoring Function

Bayesian Score Function

Figure 2: Left: using the previous method, learn a subnet G_1 over $X_{(1)} = \{S, B, D\}$. We only used samples with $X'_{(1)} = \{L, E, X, A, T\}$ fixed at (1 1 1 0 0), the samples with a strikeout IS NOT used; Right: using the new method, learn a subnet G_2 over $X_{(2)} = \{S, B, D, L, E, X\}$. $X'_{(2)}$ takes value from $\{(0, 0), (1, 1), (1, 0)\}$, we divide the dataset into three

Learn BN Structure via CL

Motivation

- Given a set of variables, human rarely try to find the dependency relations between all variables by looking at all the training samples at once
- Instead, human learn in a more organized way, starting with more common samples that involve dependency relations between only a small subset of variables

Figure 1: Variables S, B, D, L, E, X, A, T correspond to each column of the dataset respectively. Left: at stage 1, learn a subnet G_1 over $\{S, B, D\}$ from scratch with the rest variables fixed at $(1\ 1\ 1\ 0\ 0)$; **Right:** at stage 2, learn a larger subnet G_2 over $\{S, B, D, L, E, X\}$ with G_1 as the start point of search while fix the rest variables at $(0\ 0)$

Curriculum in BN Structure Learning

We define the curriculum as $(X_{(1)}, ..., X_{(n)})$, a sequence of selected subsets of the random variables $X_{(i)}$, over which the corresponding subnet G_i is learnt. Where $X = (X_1, ..., X_n)$ is a variable set, $X_{(i)} \subseteq X$, $X'_{(i)} = X \setminus X_{(i)}$, $X_{(i)} \subset X_{(i+1)}$. $(G_1, ..., G_m)$ is a sequence of intermediate learning targets.

- partitions by grouping samples based on the values of X' and use all of them
- Penalty Term

Over-fitting occurs when sample size is small or there are many stages, so we use a penalty term

 $penalty(G_i:D_i) = \left(rac{a}{SS} + rac{V(G_i)}{b}
ight) E(G_i),$

SS: sample size; $V(G_i)$: number of the variables in G_i , $E(G_i)$: number of edges in G_i ; a, b: positive constants.

► The Final Score Function

 $score(G_i:D_i) = \log P(G_i,D_{i,j}) - penalty(G_i:D_i)$

Theorems

Theorem 1 . For any i, j, k s.t. $1 \le i < j < k \le n$, we have $d_H(G_i, G_k) \ge d_H(G_j, G_k)$ where $d_H(G_i, G_j)$ is the structural Hamming distance (SHD) between the structures of two BNs G_i and G_j . **Theorem 2** . For any i, j, k s.t. $1 \le i < j < k \le n$, we have $d_{TV}(G_i, G_k) \ge d_{TV}(G_j, G_k)$ where $d_{TV}(G_i, G_j)$ is the total variation distance between the two

Limitation and Solution

Limitation

- ▷ We only used a small fraction of the dataset at each learning stage
- Solution
 - Let $X'_{(i)}$ take value from $\{x'_{(i),1}, ..., x'_{(i),q}\}$, the set of data segments $D_i = \{D_{i,1}, ..., D_{i,q}\}$ by grouping samples based on the values of $X'_{(i)}$.
 - ▷ An Important Observation: when we fix $X'_{(i)}$ to different values, our learning target is actually the same DAG structure G_i but with different

distributions defined by the two BNs G_i and G_j .

Experiments

- 10 benchmark BNs from the *bnlearn* repository (alarm, andes, asia, child, hailfinder, hepar2, insurance, sachs, water, win95pts)
- Comparisons with MMHC [*Ioannis Tsamardinos et al. ML 2006*] under metrics of BDeu, BIC, KL and SHD

		Sample Size (SS)					
Metric	Algorithm	100	500	1000	5000	10000	50000
BDeu	CL	1(0)	1(10)	1(9)	1(8)	1(10)	1(8)
	MMHC	0.89(10)	1.06(0)	1.02(1)	1.01(2)	1.02(0)	1.01(2)
BIC	CL	1(0)	1(9)	1(9)	1(6)	1(8)	1(8)
	MMHC	0.88(10)	1.07(1)	1.02(1)	1.02(4)	1.02(2)	1.01(2)
KL	CL	1(0)	1(10)	1(9)	1(7)	1(9)	1(9)
	MMHC	1.71(10)	0.82(0)	0.96(1)	0.96(2)	0.97(0)	0.97(0)
SHD	CL	1(7)	1(9)	1(7)	1(7)	1(8)	1(6)
	MMHC	1.06(3)	1.26(1)	1.29(3)	1.07(2)	1.21(1)	1.24(3)

Verification of Theorem 1

parameters (CPDs)

- Solution Assumption: $D_{i,1}, ..., D_{i,q}$ are generated by the same G_i but with *independent* CPDs
- We can revise the scoring function to take into account multiple versions of parameters

Algorithm

Algorithm 1: Curriculum Learning of BN Structures

 $\begin{array}{l} \textbf{input}: \text{ Variable Set X, Training Data } D, \text{ Curriculum } (\mathbf{X}_{(1)},...,\mathbf{X}_{(m)}). \ G_0 \text{ is initialized to} \\ \text{a network containing variables in } \mathbf{X}_{(1)} \text{ with no edge.} \\ \textbf{for } i \dots m \textbf{ do} \\ \text{Generate the set of data segments } D_i = \{D_{i,1},...,D_{i,q}\} \text{ based on the values of } \mathbf{X} \setminus \mathbf{X}_{(i)} \\ G_i \leftarrow search(D_i,\mathbf{X}_{(i)},G_{i-1}) \end{array}$

end

return: G_m

Figure 3 : SHD between the intermediate learning result at each stage and the target BN

Conclusions

- We proposed a curriculum learning algorithm for BN structure learning
 We tailored the bayesian scoring function for our algorithm
- ► We proved two theorems that show theoretical properties of our algorithm
- We empirically showed that our algorithm outperformed the state-of-the-art MMHC algorithm in learning BN structures