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Introduction

I Bayesian Network (BN)

. A directed acyclic graph (DAG) where nodes are random variables and
directed edges represent probability dependencies among variables

I BN Structure Learning

. Firstly construct the topology (structure) of the network

. Then estimate the parameters (CPDs) given the fixed structure

I Curriculum Learning (CL) [Yoshua Bengio et al. ICML 2009 ]

. Ideas: learn with the simpler samples or easier tasks as the start

. Definition: a curriculum is a sequence of weighting schemes of the
training data 〈W1,W2, . . . ,Wn〉, where W1 assigns more weight to
easier samples, then each next scheme assigns more weight to harder
samples, at last Wn assigns uniform weight to all samples

Learn BN Structure via CL

I Motivation

. Given a set of variables, human rarely try to find the dependency relations
between all variables by looking at all the training samples at once

. Instead, human learn in a more organized way, starting with more common
samples that involve dependency relations between only a small subset of
variables
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Figure 1 : Variables S,B,D,L,E,X,A, T correspond to each column of
the dataset respectively. Left: at stage 1, learn a subnet G1 over {S,B,D}
from scratch with the rest variables fixed at (1 1 1 0 0); Right: at stage 2, learn
a larger subnet G2 over {S,B,D,L,E,X} with G1 as the start point of
search while fix the rest variables at (0 0)

I Curriculum in BN Structure Learning

We define the curriculum as (X(1), ...,X(n)), a sequence of selected subsets
of the random variables X(i), over which the corresponding subnet Gi is
learnt.
Where X = (X1, ..., Xn) is a variable set, X(i) ⊆ X, X′(i) = X \X(i),

X(i) ⊂ X(i+1). (G1, ..., Gm) is a sequence of intermediate learning
targets.
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Limitation and Solution

I Limitation

. We only used a small fraction of the dataset at each learning stage

I Solution

Let X′(i) take value from {x′(i),1, ..., x′(i),q}, the set of data segments Di =

{Di,1, ..., Di,q} by grouping samples based on the values of X′(i).

. An Important Observation: when we fix X′(i) to different values, our
learning target is actually the same DAG structure Gi but with different
parameters (CPDs)

. Assumption: Di,1, ..., Di,q are generated by the same Gi but with
independent CPDs

. We can revise the scoring function to take into account multiple versions
of parameters

Algorithm

Algorithm 1: Curriculum Learning of BN Structures

input: Variable Set X, Training Data D, Curriculum (X(1), ...,X(m)). G0 is initialized to
a network containing variables in X(1) with no edge.
for i . . .m do

Generate the set of data segments Di = {Di,1, ..., Di,q} based on the values of X \ X(i)

Gi← search(Di,X(i), Gi−1)
end
return: Gm

Scoring Function

I Bayesian Score Function

logP (Gi, Di) = C +
∑q

j=1 logP (Gi, Di,j)
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Data Segments
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Figure 2 : Left: using the previous method, learn a subnet G1 over
X(1) = {S,B,D}. We only used samples with X′(1) = {L,E,X,A, T}
fixed at (1 1 1 0 0), the samples with a strikeout IS NOT used; Right: using
the new method, learn a subnet G2 over X(2) = {S,B,D,L,E,X}. X′(2)
takes value from {(0, 0), (1, 1), (1, 0)}, we divide the dataset into three
partitions by grouping samples based on the values of X′ and use all of them

I Penalty Term
Over-fitting occurs when sample size is small or there are many stages, so
we use a penalty term

penalty(Gi : Di) =
(

a
SS

+ V (Gi)
b

)
E(Gi),

SS: sample size; V (Gi): number of the variables in Gi, E(Gi): number of edges in Gi;

a, b: positive constants.

I The Final Score Function

score(Gi : Di) = logP (Gi, Di,j)− penalty(Gi : Di)

Theorems

Theorem 1 . For any i, j, k s.t. 1 ≤ i < j < k ≤ n, we have

dH(Gi, Gk) ≥ dH(Gj, Gk)

where dH(Gi, Gj) is the structural Hamming distance (SHD) between the
structures of two BNs Gi and Gj.

Theorem 2 . For any i, j, k s.t. 1 ≤ i < j < k ≤ n, we have

dTV (Gi, Gk) ≥ dTV (Gj, Gk)

where dTV (Gi, Gj) is the total variation distance between the two
distributions defined by the two BNs Gi and Gj.

Experiments

I 10 benchmark BNs from the bnlearn repository (alarm, andes, asia, child,
hailfinder, hepar2, insurance, sachs, water, win95pts)

I Comparisons with MMHC [Ioannis Tsamardinos et al. ML 2006 ] under metrics of
BDeu, BIC, KL and SHD

Sample Size (SS)

Metric Algorithm 100 500 1000 5000 10000 50000

BDeu
CL 1(0) 1(10) 1(9) 1(8) 1(10) 1(8)
MMHC 0.89(10) 1.06(0) 1.02(1) 1.01(2) 1.02(0) 1.01(2)

BIC
CL 1(0) 1(9) 1(9) 1(6) 1(8) 1(8)
MMHC 0.88(10) 1.07(1) 1.02(1) 1.02(4) 1.02(2) 1.01(2)

KL
CL 1(0) 1(10) 1(9) 1(7) 1(9) 1(9)
MMHC 1.71(10) 0.82(0) 0.96(1) 0.96(2) 0.97(0) 0.97(0)

SHD
CL 1(7) 1(9) 1(7) 1(7) 1(8) 1(6)
MMHC 1.06(3) 1.26(1) 1.29(3) 1.07(2) 1.21(1) 1.24(3)

I Verification of Theorem 1
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SHD Results − Alarm − In Each Stage
SS = 5000 And Step Size t = 2
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Figure 3 : SHD between the intermediate learning result at each stage and the target BN

Conclusions

I We proposed a curriculum learning algorithm for BN structure learning
I We tailored the bayesian scoring function for our algorithm
I We proved two theorems that show theoretical properties of our algorithm
I We empirically showed that our algorithm outperformed the state-of-the-art

MMHC algorithm in learning BN structures

http://www.bnlearn.com/bnrepository/

