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An Example of Using LDFMs to Model CSI
The assignments of the variables can influence the distribu-
tion over the dependency structures. In this way, LDFMs
can model CSI to some extent. Here is an example of using
LDFM-S to model three binary variables X1, X2 and X3.
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Figure 1: All possible pairwise dependencies between the
three variables and a root node. Each dependency has a
weight and only the dependencies with non-zero weights
are shown. The weight ws|xi

, which is the probability of
generating a stop node given the assignment Xi = xi is not
drawn for simplicity, but it can be computed using the nor-
malization condition discussed in the LDFM-S subsection in
the main text.

Figure 1 gives an example of using LDFM-S to model CSI.
The conditional probabilities of the two variables X2 and X3

given X1 can be computed using the formula in the LDFM-S
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Table 1: The conditional probabilities of the two variables
X2 and X3 given X1

X1 X2 X3 P (X2, X3|X1)

T T T 0.5
T T F 0
T F T 0
T F F 0.5
F T T 0.251
F T F 0.249
F F T 0.249
F F F 0.251

subsection and they are shown in Table 1. It can be seen that
when X1 = T , X2 and X3 are strongly dependent; when
X1 = F , they are only weakly dependent.

The Derivation Details

We show the details of deriving the probability of generating
an assignment x discussed in the LDFM subsection in the
main text.
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where T̂ is the uniformly generated tree structure and M is
a mapping from the n variables to the n nodes of the tree
structure T̂ , β is the constant value of p(T̂ ). βn! is a constant
w.r.t. x. Here we have n! because for each spanning tree
T of Gx, each permutation of the n variables is generated
differently (i.e., corresponds to a different 〈T,M〉 pair).



Table 2: The maximum of CLL and CMLL normalized by the number of query variables. The bold numbers mark the best
performance.

Dataset Asia Child Alarm Insurance Sachs Water Win95pts Hepar2 Hailfinder
5000 training samples; 40% Query, 30% Evidence

BN -0.274 -0.721 -0.436 -0.565 -0.675 -0.474 -0.229 -0.509 -1.223
DN -0.268 -0.634 -0.317 -0.499 -0.610 -0.407 -0.185 -0.490 -1.089
SPN -0.262 -0.63 -0.277 -0.476 -0.644 -0.415 -0.118 -0.489 -0.941
MT -0.262 -0.707 -0.343 -0.557 -0.647 -0.435 -0.121 -0.507 -1.241
LDFM -0.258 -0.609 -0.293 -0.460 -0.605 -0.399 -0.166 -0.481 -0.991
LDFM-S -0.263 -0.607 -0.291 -0.462 -0.613 -0.462 -0.130 -0.480 -0.987

5000 training samples; 30% Query, 40% Evidence
BN -0.266 -0.711 -0.411 -0.589 -0.655 -0.437 -0.187 -0.497 -1.088
DN -0.237 -0.610 -0.303 -0.528 -0.589 -0.391 -0.148 -0.479 -0.985
SPN -0.229 -0.619 -0.272 -0.506 -0.620 -0.402 -0.114 -0.481 -0.893
MT -0.226 -0.698 -0.348 -0.603 -0.620 -0.427 -0.116 -0.499 -1.188
LDFM -0.230 -0.609 -0.288 -0.481 -0.581 -0.383 -0.129 -0.461 -0.908
LDFM-S -0.235 -0.588 -0.286 -0.482 -0.586 -0.461 -0.124 -0.459 -0.904

The Evaluation Results of LDFM-S
We report the results of LDFM-S and LDFM trained on the
5000-sample datasets and evaluated by using Gibbs sampling
on two different proportions of dividing the query and evi-
dence variables in Table 2. It can be seen that LDFM-S has
similar performance to LDFM on most datasets, but achieves
significantly better results on the Win95pts dataset and signif-
icantly worse results on the Water dataset. Therefore, it may
depend on the dataset as to whether modeling distributions
over tree structures is useful.

More Evaluation Results
In the Experiments section in the main text, we report the
evaluation results of two proportions of dividing the query
and evidence variables (40% query, 30% evidence and 30%
query, 20% evidence). In Table 3 we report the evaluation re-
sults of the other two proportions (30% query, 40% evidence
and 20% query, 30% evidence).



Table 3: The maximum of CLL and CMLL normalized by the number of query variables. The bold numbers mark the best
performance.

Dataset Asia Child Alarm Insurance Sachs Water Win95pts Hepar2 Hailfinder
5000 training samples; 30% Query, 40% Evidence

BN -0.266 -0.711 -0.411 -0.589 -0.655 -0.437 -0.187 -0.497 -1.088
DN -0.237 -0.610 -0.303 -0.528 -0.589 -0.391 -0.148 -0.479 -0.985
SPN -0.229 -0.619 -0.272 -0.506 -0.620 -0.402 -0.114 -0.481 -0.893
MT -0.226 -0.698 -0.348 -0.603 -0.620 -0.427 -0.116 -0.499 -1.188
g-LDFM -0.230 -0.609 -0.288 -0.481 -0.581 -0.383 -0.129 -0.461 -0.908
t-LDFM -0.210 -0.630 -0.349 -0.556 -0.590 -0.389 -0.159 -0.464 -1.019

2000 training samples; 30% Query, 40% Evidence
BN -0.266 -0.764 -0.469 -0.599 -0.669 -0.466 -0.195 -0.506 -1.099
DN -0.242 -0.626 -0.312 -0.550 -0.597 -0.404 -0.154 -0.497 -0.999
SPN -0.232 -0.634 -0.300 -0.519 -0.634 -0.406 -0.117 -0.479 -0.911
MT -0.228 -0.719 -0.371 -0.623 -0.638 -0.446 -0.132 -0.521 -1.250
g-LDFM -0.229 -0.587 -0.303 -0.487 -0.581 -0.378 -0.126 -0.462 -0.900
t-LDFM -0.218 -0.640 -0.392 -0.555 -0.576 -0.402 -0.169 -0.465 -1.013

500 training samples; 30% Query, 40% Evidence
BN -0.288 -0.776 -0.500 -0.690 -0.721 -0.480 -0.236 -0.534 -1.314
DN -0.240 -0.654 -0.348 -0.706 -0.625 -0.418 -0.186 -0.498 -1.058
SPN -0.243 -0.752 -0.425 -0.637 -0.741 -0.512 -0.147 -0.520 -1.140
MT -0.234 -0.961 -0.569 -0.811 -0.710 -0.562 -0.183 -0.647 -2.226
g-LDFM -0.238 -0.609 -0.331 -0.509 -0.596 -0.390 -0.152 -0.473 -0.947
t-LDFM -0.220 -0.650 -0.359 -0.562 -0.579 -0.398 -0.167 -0.473 -1.029

5000 training samples; 20% Query, 30% Evidence
BN -0.217 -0.724 -0.432 -0.585 -0.698 -0.448 -0.217 -0.505 -1.164
DN -0.198 -0.655 -0.316 -0.524 -0.626 -0.411 -0.174 -0.487 -1.068
SPN -0.188 -0.671 -0.297 -0.514 -0.660 -0.428 -0.133 -0.491 -0.982
MT -0.189 -0.733 -0.355 -0.586 -0.659 -0.445 -0.134 -0.506 -1.277
g-LDFM -0.192 -0.644 -0.309 -0.480 -0.617 -0.398 -0.145 -0.468 -0.972
t-LDFM -0.166 -0.678 -0.352 -0.544 -0.618 -0.404 -0.168 -0.471 -1.068

2000 training samples; 20% Query, 30% Evidence
BN -0.217 -0.759 -0.486 -0.600 -0.697 -0.464 -0.214 -0.510 -1.159
DN -0.194 -0.659 -0.330 -0.547 -0.638 -0.418 -0.177 -0.492 -1.073
SPN -0.189 -0.682 -0.324 -0.518 -0.667 -0.431 -0.137 -0.492 -0.993
MT -0.189 -0.750 -0.376 -0.601 -0.669 -0.455 -0.148 -0.522 -1.316
g-LDFM -0.191 -0.637 -0.319 -0.483 -0.620 -0.402 -0.143 -0.471 -0.946
t-LDFM -0.169 -0.687 -0.394 -0.551 -0.618 -0.408 -0.183 -0.472 -1.062

500 training samples; 20% Query, 30% Evidence
BN -0.223 -0.778 -0.522 -0.664 -0.716 -0.479 -0.262 -0.535 -1.431
DN -0.192 -0.675 -0.362 -0.551 -0.676 -0.428 -0.199 -0.499 -1.116
SPN -0.192 -0.795 -0.444 -0.627 -0.765 -0.517 -0.161 -0.529 -1.219
MT -0.191 -0.915 -0.522 -0.721 -0.721 -0.511 -0.184 -0.607 -2.120
g-LDFM -0.198 -0.648 -0.335 -0.497 -0.642 -0.406 -0.168 -0.478 -0.990
t-LDFM -0.172 -0.690 -0.368 -0.551 -0.613 -0.410 -0.175 -0.476 -1.075
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