Latent Dependency Forest Models

Basics

Let \(x = (X_1, X_2, \ldots, X_n) \) be a set of random variables and \(x = (x_1, x_2, \ldots, x_n) \) be an assignment to the set of random variables. Given an assignment \(x \), we construct a complete directed graph \(G_{x} = (V_x, E_x) \) such that:

\[V_x = \{x_1, x_2, \ldots, x_n\} \]

\[E_x = \{(x_i, x_j) | i \neq j, \ 0 \leq i < n, \ 1 \leq j \leq n\} \]

We obtain a single dependency tree structure that is a directed spanning tree of the graph \(G_{x} \) rooted at \(x_0 \), where the weight of the graph is denoted as \(w_{ij} \). We denote this tree by \(T = (V_T, E_T) \), where \(V_T = V_x, E_T \subseteq E_x \). We can compute the strength of a spanning tree \(T = (V_T, E_T) \) as the product of the edge weights:

\[w(T) = \prod_{(i,j) \in E_T} w_{ij} \]

Weight of the assignment is the sum over the weights of all possible dependency trees for \(x \).

LDFM, a generative model based on the above framework.

An assignment \(x = (x_1, x_2, \ldots, x_n) \) is generated recursively in a top-down manner.

Firstly, we generate a dependency tree with \(n + 1 \) nodes uniformly at random. We label the root node as \(x_0 \).

Then, starting from the root node, we recursively traverse the tree in pre-order; at each non-root node, we generate a \((\text{variable}, \text{value})\), pair conditioned on the \((\text{variable}, \text{value})\) pair of its parent node. The probability of generating an assignment \(x \) is:

\[p(x) = \frac{\text{beta}!}{\text{beta}^{(n+1)}} \times Z \]

Matrix Tree Theorem (MTT)

Let \(G \) be a graph with nodes \(V = \{x_1, x_2, \ldots, x_n\} \) and edges \(E \). Define (Laplacian) matrix \(Q \) as \((n+1) \times (n+1) \) matrix indexed from \(0 \) to \(n \). For all \(i \) and \(j \):

\[Q_{ij} = \left\{ \begin{array}{ll} w_{ij} & \text{if } i = j \text{ and } V_j \text{ is a dummy root node.} \\ -w_{ij} & \text{if } i \neq j \text{ and } (x_i, x_j) \in E \end{array} \right. \]

If the \(i \)-th row and column are removed from \(Q \) to produce the matrix \(Q' \), then the sum of the weights of all the directed spanning trees rooted at node \(i \) is equal to the determinant of \(Q' \). Here, \(Z = \det(Q') \)

\[p(x) = Z^{-1} \]

Properties

- **Properties**
 - **Independence Property**
 - **Consistency Property**
 - **Constrained Dependencies**
 - **Direct Acyclic Graphs**
 - **Latent Variables**

Learning

- **Key Ideas**
 - **Avoid the difficult structure learning problem by assuming a complete LDFM structure**
 - **Rely on parameter learning to specify the weights of all the dependencies**

- **Objective Function**

Inference

- **Probabilistic Inference**
- **Gibbs Sampling**
- **Tree Sampling**

Experiments

- **9 benchmark BNs from the bnlearn repository**
- **We sampled two training sets of 5000 and 500 instances, one validation set of 1000 instances, and one testing set of 1000 instances**
- **All the random variables are discrete**
- **Comparisons by their accuracy in query answering on the test data, which is to compute the conditional log likelihood (CLL) \(p(q | e) \) where \(q \) and \(e \) are the values that \(Q \) and \(E \) in the test data sample.**
- **Due to sample sparsity of sampling algorithms, we report the maximum of \(\text{CLL} \) and \(\text{CMML} \) \((\sum_{x \in X} \log p(x | e) = e) \) values.**
- **We empirically showed that LDFMs are competitive with existing probabilistic models.**

Table 1: The maximum of CLL and CMML normalized by the number of query variables. The bold numbers mark the best performances. g-LDFM denotes the results of LDFM by using Gibbs sampling and t-LDFM denotes the results of LDFM by using tree-augmented sampling.