Visit ShanghaiTech University | 中文 | How to find us
HOME > News and Events > Events
Static Energy Management in Supercomputer Interconnection Networks Using Topology-Aware Partitioning
Date: 2018/4/28             Browse: 84

Speaker:     Prof. Juan Chen. NUDT

Time:          10:15—11:15, Apr 28 

Location:    Room 1A-200, SIST Building

Host:          Prof. Shu Yin

Abstract:

With the parallel systems being scaled-up, the static energy consumed by their interconnection networks has been increasing substantially. The key to reducing static energy in supercomputers is switching off their unused components. Routers are the major components of a supercomputer. Whether routers can be effectively switched off or not has become the key to static energy management for supercomputers. For many typical applications, the routers in a supercomputer exhibit low utilization. However, it is very difficult to switch the routers off when they are idle. By analyzing the router occupancy in time and space, we present a routing-policy guided topology partitioning methodology to solve this problem. We propose topology partitioning methods for three kinds of commonly used topologies (mesh, torus and fat-tree) equipped with the three most popular routing policies (deterministic routing, directionally adaptive routing and fully adaptive routing). Based on the above methods, we propose the key techniques required in this topology partitioning based static energy management in supercomputer interconnection networks to switch off unused routers in both time and space dimensions. Three topology-aware resource allocation algorithms have been developed to

handle effectively different job-mixes running on a supercomputer. We validate the effectiveness of our methodology by using Tianhe-2 and a simulator for the aforementioned topologies and routing policies.

Bio:

陈娟,女,博士,国防科技大学计算机学院副教授、硕士生导师。加州大学河滨分校访问学者。2007年于国防科技大学获得计算机科学与技术专业博士学位。

陈娟博士目前担任中国计算机学会理论计算机专委会委员、中国计算机学会(CCF)高级会员、ACM SIGCSE China副秘书长、常务理事、ACM/IEEE会员。

作为核心技术骨干参与天河超级计算机系统研制,在高性能编译优化、高效异构协同计算、多核多线程并行优化、软件低功耗优化技术、能量有效性优化技术等方面开展了长期深入的研究。获军队科技进步一等奖1项,军队科技进步二等奖1项,湖南省科技进步二等奖1项、校教学成果二等奖1项。主持和参与了国家自然科学基金青年基金项目、国家自然科学基金面上项目、国家重点实验室基金项目、核高基重大专项、国家863重点项目等10余项课题研究。在IEEE Transactions on Computers、Parallel Computing、FCS、JCST、RSC Advances、Cluster、SIGCSE等国际著名期刊和会议上发表论文多篇。累计共发表学术论文60余篇。获Cluster 2010最佳论文奖。获得国家发明专利9项。

在大规模并行计算机系统能量优化研究方面,针对高性能计算机所面临的高功耗挑战,在低功耗编译优化技术、高性能互连的静态能量管理等方面进行了长期深入的研究,提出了基于拓扑图划分的高性能互连静态能量管理技术。目前正在从事能量建模与预测、能量有效性的相关理论及方法研究。

担任2018中国图灵大会SIGCSE程序委员会共同主席;SIGCSE '17、SIGCSE '18、ITiCSE '17、ACM TURC (SIGCSE China) '17 - '18、ICESS '14 - '16、HPCC '08等国际会议程序委员会委员。担任IEEE TPDS、Frontiers of Computer Science in China、IEEE Systems Journal等多个重要学术期刊的审稿人。

SIST-Seminar 18026