Modeling and Distributed Optimization for Cloud/Fog Computing Networks

发布时间:2019-11-13浏览次数:359

Speak:     Prof. Yong Xiao

Time:       09:00-10:00, Nov. 14

Location:  SIST 1C 502

Host:       Prof. Yang Yang

Abstract:

Fog computing is a virtualized network architecture that uses one or a collaborative multitude of end-user clients or near-user edge devices to carry out a substantial amount of storage, communication, and control, configuration, measurement, and management. It can offload workload from cloud data centers, reduce the transmission latency, improve the system reliability, and ease traffic congestion of the Internet. It also enables many new services and applications that cannot fit well in the traditional cloud computing architecture. In this talk, I will first briefly introduce the recent developments in the mobile cloud and fog computing. I will then introduce two important performance metrics for fog computing networks: quality-of-experience (QoE) and power efficiency. A fundamental tradeoff between QoE and power efficiency will then be discussed. Motivated by the observation that the users QoE can be further improved if the workload offloading process of each fog node can be helped by others, I also talk about a fog computing framework with fog node cooperation. The QoE and power efficiency tradeoff under cooperative fog computing will be discussed. Recently, standardization bodies including 3GPP and ETSI have included fog computing as the key component in 5G networks. We introduce a novel concept called dynamic network slicing for implementing fog computing into the 5Gs service-base architecture (SBA). In this concept, the limited computational resources can be sliced and reserved according to the traffic demands and Quality-of-Service (QoS) requirements of various supported services. We propose a stochastic overlapping coalition-formation game-based framework to investigate distributed cooperation and joint network slicing between fog nodes under randomly fluctuating resource availability, workload arrival processes, and QoS demands. Applications of 5G-enabled fog computing networks in the Tactile Internet and smart vehicular systems will be discussed. Finally, I will also talk about my current works on designing fog computing-enabled self-driving vehicular systems and deep learning-based optimization algorithms.

Bio:

肖泳目前是华中科技大学电子信息与通信学院教授、博士生导师、5G联创行业应用开发实验室副主任。于2006年和2012年分别在香港科技大学和新加坡南洋理工大学获得硕士和博士学位。博士毕业后曾在南洋理工大学、爱尔兰圣三一学院、美国休斯顿大学和美国麻省理工学院等欧美名校从事博士后研究工作。20169月到20188月在亚利桑那大学担任研究助理教授,同时兼任美国自然科学基金NSF大学与工业联合研究计划资助的大型研究中心Center Manager。曾主持两项美国自然科学基金与工业界联合资助项目。在国际顶级期刊和会议发表论文超过60篇。他目前是CCF A类推荐期刊IEEE Transactions on Mobile Computing的编委会成员,并担任超过20多个专业主流期刊和会议的技术委员会成员。他是IEEE资深会员。他的研究兴趣包括无线通信、云//边缘计算、机器学习、5G通信技术等。其他更多信息请参见他的个人主页:http://eic.hust.edu.cn/professor/xiaoyong/

Sist seminar 18218